Skip to content

zhyever/Amodal-Depth-Anything

Repository files navigation

Amodal Depth Anything

Amodal Depth Estimation in the Wild

Website Paper Hugging Face Model License: MIT

Zhenyu Li1, Mykola Lavreniuk2, Jian Shi1, Shariq Farooq Bhat1, Peter Wonka1.
KAUST1, Space Research Institute NASU-SSAU2

NEWS

💻 Environment setup

Install environment using environment.yaml :

Using mamba (fastest):

mamba env create -n amodaldepth --file environment.yaml
mamba activate amodaldepth

Using conda :

conda env create -n amodaldepth --file environment.yaml
conda activate amodaldepth

Install pix2gestalt:

git clone https://github.com/cvlab-columbia/pix2gestalt.git
mv ./pix2gestalt ./pix2gestalt_raw
mv ./pix2gestalt_raw/pix2gestalt ./pix2gestalt
rm -rf ./pix2gestalt_raw

Install taming-transformers and CLIP:

git clone https://github.com/CompVis/taming-transformers.git
pip install -e taming-transformers/
git clone https://github.com/openai/CLIP.git
pip install -e CLIP/

🛠️ Models

Pretrained Models

Model Checkpoint Description
Base Depth-Anything-V2 Model Download Base depth model. Save to work_dir/ckp/amodal_depth_anything_base.pth
Amodal-Depth-Anything Model HuggingFace Model Amodal depth model. Automatically downloading
SAM Download Segmentation model. Save to work_dir/ckp/pix2gestalt/sam_vit_h.pth
pix2gestalt Download Amodal segmentation model. Save to work_dir/ckp/pix2gestalt/epoch=000005.ckpt

Download

wget -c -P ./work_dir/ckp/ https://huggingface.co/zhyever/Amodal-Depth-Anything/resolve/main/base_depth_model/amodal_depth_anything_base.pth
wget -c -P ./work_dir/ckp/pix2gestalt/ https://gestalt.cs.columbia.edu/assets/sam_vit_l.pth
wget -c -P ./work_dir/ckp/pix2gestalt/ https://gestalt.cs.columbia.edu/assets/epoch=000005.ckpt

🤔 Folder Structure

Before executing the code, make sure the folder structure is as follows:

Amodal-Depth-Anything
├── assets
├── CLIP
├── config
├── data_split
├── data_split
├── pix2gestalt
│   ├── configs
│   ├── ldm
│   ├── ... other files
├── src
├── taming-transformers
├── work_dir
│   ├── ckp
│   │   ├── amodal_depth_anything_base.pth
│   │   ├── pix2gestalt
│   │   │   ├── epoch=000005.ckpt
│   │   │   ├── sam_vit_h.pth
├── app.py
├── ... other files

🚀 Inference

With Image and Amodal Mask

Run our infer.py to estimate amodal depth based on the input image and amodal mask:

python ./infer.py --input_image_path ./assets/inference_examples/case1.jpg --input_mask_path ./assets/inference_masks/case1_mask.png --output_folder ./assets/results/

Have no idea how to get amodal masks? Try our offline demo that implements both Model Heuristics (with the power of pix2gestalt) and Human Heuristics (drawing masks manually) modes

Offline Demo

Run our offline demo app.py to start the offline demo:

python ./app.py

After that, you would see the following message:

... tons of logs
Running on local URL:  http://127.0.0.1:7860
Running on public URL: https://xxxx.gradio.live

Simply open the local URL in your browser to start the demo.

TBD

  • 2024-12-01: Online Gradio Demo
  • 2024-12-01: Dataset Preparation and Training Docs

About

Amodal Depth Anything: Amodal Depth Estimation in the Wild

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages