Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Graphrag integration #4612

Merged
Merged
Show file tree
Hide file tree
Changes from 39 commits
Commits
Show all changes
61 commits
Select commit Hold shift + click to select a range
e3e8f45
add initial global search draft
lpinheiroms Dec 7, 2024
8242378
add graphrag dep
lpinheiroms Dec 9, 2024
fb2fb19
Merge branch 'main' into lpinheiro/feat/add-graphrag-tools
lpinheiroms Dec 10, 2024
a13c18b
fix local search embedding
lpinheiroms Dec 17, 2024
8f3c484
linting
lpinheiroms Dec 17, 2024
0c05047
add from config constructor
lpinheiroms Dec 17, 2024
0e53f91
Merge branch 'main' into lpinheiro/feat/add-graphrag-tools
lspinheiro Dec 17, 2024
c1e7ea2
remove draft notebook
lpinheiroms Dec 17, 2024
a8b38ad
Merge branch 'main' into lpinheiro/feat/add-graphrag-tools
lspinheiro Dec 19, 2024
6d61c8e
update config factory and add docstrings
lpinheiroms Dec 20, 2024
1c4ed3d
add graphrag sample
lpinheiroms Dec 20, 2024
95f329c
add sample prompts
lpinheiroms Dec 20, 2024
3bc104b
update readme
lpinheiroms Dec 20, 2024
2ae6812
Merge branch 'main' into lpinheiro/feat/add-graphrag-tools
lspinheiro Dec 20, 2024
33523df
update deps
lpinheiroms Dec 20, 2024
8080ddb
Add API docs
ekzhu Dec 30, 2024
603c1c9
Update python/samples/agentchat_graphrag/requirements.txt
ekzhu Dec 30, 2024
934230b
Update python/samples/agentchat_graphrag/requirements.txt
ekzhu Dec 30, 2024
1c5fcd3
merge main, fix conflicts
lpinheiroms Dec 30, 2024
4f0c71f
update docstrings with snippet and doc ref
lpinheiroms Dec 30, 2024
e3dc1f9
lint
lpinheiroms Dec 30, 2024
f24fb6c
improve set up instructions in docstring
lpinheiroms Jan 3, 2025
4a5d611
lint
lpinheiroms Jan 3, 2025
74a2a23
Merge branch 'main' into lpinheiro/feat/add-graphrag-tools
lpinheiroms Jan 3, 2025
cac2aef
update lock
lpinheiroms Jan 3, 2025
e42f027
Update python/packages/autogen-ext/src/autogen_ext/tools/graphrag/_gl…
lspinheiro Jan 4, 2025
e60a9aa
Update python/packages/autogen-ext/src/autogen_ext/tools/graphrag/_lo…
lspinheiro Jan 4, 2025
180373a
add unit tests
lpinheiroms Jan 7, 2025
e6f3eea
Merge branch 'main' into lpinheiro/feat/add-graphrag-tools
lspinheiro Jan 7, 2025
4fc1fd8
update lock
lspinheiro Jan 7, 2025
ef49c97
Merge branch 'main' into lpinheiro/feat/add-graphrag-tools
lspinheiro Jan 8, 2025
3c2735e
update uv lock
lspinheiro Jan 8, 2025
330bb18
add docstring newlines
lspinheiro Jan 8, 2025
47c5826
stubs and typing on graphrag tests
lspinheiro Jan 8, 2025
7b4142c
Merge branch 'main' into lpinheiro/feat/add-graphrag-tools
lspinheiro Jan 9, 2025
c35147b
fix docstrings
lspinheiro Jan 9, 2025
2ac3edf
fix mypy error
lspinheiro Jan 9, 2025
dff93ea
+ linting and type fixes
lspinheiro Jan 9, 2025
b9b3ec0
type fix graphrag sample
lspinheiro Jan 9, 2025
483b567
Update python/packages/autogen-ext/src/autogen_ext/tools/graphrag/_gl…
lspinheiro Jan 10, 2025
eec0d2b
Update python/packages/autogen-ext/src/autogen_ext/tools/graphrag/_lo…
lspinheiro Jan 10, 2025
6351b38
Update python/samples/agentchat_graphrag/requirements.txt
lspinheiro Jan 10, 2025
8fed349
Merge branch 'main' into lpinheiro/feat/add-graphrag-tools
lspinheiro Jan 10, 2025
4431968
update overrides
lspinheiro Jan 11, 2025
f34eb8f
fix docstring client imports
lspinheiro Jan 11, 2025
07ed135
additional docstring fix
lspinheiro Jan 11, 2025
10e6777
Merge branch 'main' into lpinheiro/feat/add-graphrag-tools
lspinheiro Jan 11, 2025
3034f8a
add docstring missing import
lspinheiro Jan 11, 2025
7282191
Merge branch 'main' into lpinheiro/feat/add-graphrag-tools
lspinheiro Jan 12, 2025
17c6bff
Merge branch 'main' into lpinheiro/feat/add-graphrag-tools
ekzhu Jan 12, 2025
74e609a
use openai and fix db path
lpinheiroms Jan 13, 2025
c9cc1bc
use console for displaying messages
lpinheiroms Jan 13, 2025
46b4611
add model config and gitignore
lpinheiroms Jan 13, 2025
4312a0d
update readme
lpinheiroms Jan 13, 2025
f92b8f7
lint
lpinheiroms Jan 13, 2025
bdfa34f
Merge branch 'main' into lpinheiro/feat/add-graphrag-tools
lspinheiro Jan 13, 2025
11d5b57
Merge branch 'main' into lpinheiro/feat/add-graphrag-tools
lspinheiro Jan 13, 2025
ef8032e
Update python/samples/agentchat_graphrag/README.md
ekzhu Jan 15, 2025
77df469
Update python/samples/agentchat_graphrag/README.md
ekzhu Jan 15, 2025
5f65317
Merge branch 'main' into lpinheiro/feat/add-graphrag-tools
ekzhu Jan 15, 2025
b372551
Comment remaining azure config
lspinheiro Jan 15, 2025
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions python/packages/autogen-core/docs/src/reference/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,7 @@ python/autogen_ext.teams.magentic_one
python/autogen_ext.models.openai
python/autogen_ext.models.replay
python/autogen_ext.tools.langchain
python/autogen_ext.tools.graphrag
python/autogen_ext.tools.code_execution
python/autogen_ext.code_executors.local
python/autogen_ext.code_executors.docker
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
autogen\_ext.tools.graphrag
===========================


.. automodule:: autogen_ext.tools.graphrag
:members:
:undoc-members:
:show-inheritance:
2 changes: 2 additions & 0 deletions python/packages/autogen-ext/pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@ file-surfer = [
"autogen-agentchat==0.4.0.dev13",
"markitdown>=0.0.1a2",
]
graphrag = ["graphrag>=1.0.1"]
web-surfer = [
"autogen-agentchat==0.4.0.dev13",
"playwright>=1.48.0",
Expand Down Expand Up @@ -57,6 +58,7 @@ packages = ["src/autogen_ext"]
dev = [
"autogen_test_utils",
"langchain-experimental",
"pandas-stubs>=2.2.3.241126",
]

[tool.ruff]
Expand Down
Original file line number Diff line number Diff line change
@@ -1,9 +1,9 @@
from ._openai_client import AzureOpenAIChatCompletionClient, OpenAIChatCompletionClient, BaseOpenAIChatCompletionClient
from ._openai_client import AzureOpenAIChatCompletionClient, BaseOpenAIChatCompletionClient, OpenAIChatCompletionClient
from .config import (
AzureOpenAIClientConfigurationConfigModel,
OpenAIClientConfigurationConfigModel,
BaseOpenAIClientConfigurationConfigModel,
CreateArgumentsConfigModel,
OpenAIClientConfigurationConfigModel,
)

__all__ = [
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
from ._config import (
GlobalContextConfig,
GlobalDataConfig,
LocalContextConfig,
LocalDataConfig,
MapReduceConfig,
SearchConfig,
)
from ._global_search import GlobalSearchTool, GlobalSearchToolArgs, GlobalSearchToolReturn
from ._local_search import LocalSearchTool, LocalSearchToolArgs, LocalSearchToolReturn

__all__ = [
"GlobalSearchTool",
"LocalSearchTool",
"GlobalDataConfig",
"LocalDataConfig",
"GlobalContextConfig",
"GlobalSearchToolArgs",
"GlobalSearchToolReturn",
"LocalContextConfig",
"LocalSearchToolArgs",
"LocalSearchToolReturn",
"MapReduceConfig",
"SearchConfig",
]
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
from pydantic import BaseModel


class DataConfig(BaseModel):
input_dir: str
entity_table: str = "create_final_nodes"
entity_embedding_table: str = "create_final_entities"
community_level: int = 2


class GlobalDataConfig(DataConfig):
community_table: str = "create_final_communities"
community_report_table: str = "create_final_community_reports"


class LocalDataConfig(DataConfig):
relationship_table: str = "create_final_relationships"
text_unit_table: str = "create_final_text_units"


class ContextConfig(BaseModel):
max_data_tokens: int = 8000


class GlobalContextConfig(ContextConfig):
use_community_summary: bool = False
shuffle_data: bool = True
include_community_rank: bool = True
min_community_rank: int = 0
community_rank_name: str = "rank"
include_community_weight: bool = True
community_weight_name: str = "occurrence weight"
normalize_community_weight: bool = True
max_data_tokens: int = 12000


class LocalContextConfig(ContextConfig):
text_unit_prop: float = 0.5
community_prop: float = 0.25
include_entity_rank: bool = True
rank_description: str = "number of relationships"
include_relationship_weight: bool = True
relationship_ranking_attribute: str = "rank"


class MapReduceConfig(BaseModel):
map_max_tokens: int = 1000
map_temperature: float = 0.0
reduce_max_tokens: int = 2000
reduce_temperature: float = 0.0
allow_general_knowledge: bool = False
json_mode: bool = False
response_type: str = "multiple paragraphs"


class SearchConfig(BaseModel):
max_tokens: int = 1500
temperature: float = 0.0
response_type: str = "multiple paragraphs"
Original file line number Diff line number Diff line change
@@ -0,0 +1,218 @@
# mypy: disable-error-code="no-any-unimported,misc"
from pathlib import Path

import pandas as pd
import tiktoken
from autogen_core import CancellationToken
from autogen_core.tools import BaseTool
from graphrag.config.config_file_loader import load_config_from_file
from graphrag.query.indexer_adapters import (
read_indexer_communities,
read_indexer_entities,
read_indexer_reports,
)
from graphrag.query.llm.base import BaseLLM
from graphrag.query.llm.get_client import get_llm
from graphrag.query.structured_search.global_search.community_context import GlobalCommunityContext
from graphrag.query.structured_search.global_search.search import GlobalSearch
from pydantic import BaseModel, Field

from ._config import GlobalContextConfig as ContextConfig
from ._config import GlobalDataConfig as DataConfig
from ._config import MapReduceConfig

_default_context_config = ContextConfig()
_default_mapreduce_config = MapReduceConfig()


class GlobalSearchToolArgs(BaseModel):
query: str = Field(..., description="The user query to perform global search on.")


class GlobalSearchToolReturn(BaseModel):
answer: str


class GlobalSearchTool(BaseTool[GlobalSearchToolArgs, GlobalSearchToolReturn]):
"""Enables running GraphRAG global search queries as an AutoGen tool.

This tool allows you to perform semantic search over a corpus of documents using the GraphRAG framework.
The search combines graph-based document relationships with semantic embeddings to find relevant information.

.. note::
This tool requires the :code:`graphrag` extra for the :code:`autogen-ext` package.

To install:

.. code-block:: bash

pip install "autogen-agentchat==0.4.0.dev13" "autogen-ext[graphrag]==0.4.0.dev13"
lspinheiro marked this conversation as resolved.
Show resolved Hide resolved

Before using this tool, you must complete the GraphRAG setup and indexing process:

1. Follow the GraphRAG documentation to initialize your project and settings
2. Configure and tune your prompts for the specific use case
3. Run the indexing process to generate the required data files
4. Ensure you have the settings.yaml file from the setup process

Please refer to the [GraphRAG documentation](https://microsoft.github.io/graphrag/)
for detailed instructions on completing these prerequisite steps.

Example usage with AssistantAgent:

.. code-block:: python

import asyncio
from autogen_ext.models.openai import AzureOpenAIChatCompletionClient
from autogen_ext.tools.graphrag import GlobalSearchTool
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
from autogen_agentchat.agents import AssistantAgent


async def main():
# Initialize the OpenAI client
openai_client = OpenAIChatCompletionClient(
model="gpt-4o-mini",
api_key="<api-key>",
)

# Set up global search tool
global_tool = GlobalSearchTool.from_settings(settings_path="./settings.yaml")
ekzhu marked this conversation as resolved.
Show resolved Hide resolved

# Create assistant agent with the global search tool
assistant_agent = AssistantAgent(
name="search_assistant",
tools=[global_tool],
model_client=openai_client,
system_message=(
"You are a tool selector AI assistant using the GraphRAG framework. "
"Your primary task is to determine the appropriate search tool to call based on the user's query. "
"For broader, abstract questions requiring a comprehensive understanding of the dataset, call the 'global_search' function."
),
)

# Run a sample query
query = "What is the overall sentiment of the community reports?"
response_stream = assistant_agent.run_stream(task=query)
ekzhu marked this conversation as resolved.
Show resolved Hide resolved

async for msg in response_stream:
if hasattr(msg, "content"):
print(f"Agent response: {msg.content}")


if __name__ == "__main__":
asyncio.run(main())
"""

def __init__(
self,
token_encoder: tiktoken.Encoding,
llm: BaseLLM,
data_config: DataConfig,
context_config: ContextConfig = _default_context_config,
mapreduce_config: MapReduceConfig = _default_mapreduce_config,
):
super().__init__(
args_type=GlobalSearchToolArgs,
return_type=GlobalSearchToolReturn,
name="global_search_tool",
description="Perform a global search with given parameters using graphrag.",
)
# Use the provided LLM
self._llm = llm

# Load parquet files
community_df: pd.DataFrame = pd.read_parquet(f"{data_config.input_dir}/{data_config.community_table}.parquet") # type: ignore
entity_df: pd.DataFrame = pd.read_parquet(f"{data_config.input_dir}/{data_config.entity_table}.parquet") # type: ignore
report_df: pd.DataFrame = pd.read_parquet( # type: ignore
f"{data_config.input_dir}/{data_config.community_report_table}.parquet"
)
entity_embedding_df: pd.DataFrame = pd.read_parquet( # type: ignore
f"{data_config.input_dir}/{data_config.entity_embedding_table}.parquet"
)

communities = read_indexer_communities(community_df, entity_df, report_df)
reports = read_indexer_reports(report_df, entity_df, data_config.community_level)
entities = read_indexer_entities(entity_df, entity_embedding_df, data_config.community_level)

context_builder = GlobalCommunityContext(
community_reports=reports,
communities=communities,
entities=entities,
token_encoder=token_encoder,
)

context_builder_params = {
"use_community_summary": context_config.use_community_summary,
"shuffle_data": context_config.shuffle_data,
"include_community_rank": context_config.include_community_rank,
"min_community_rank": context_config.min_community_rank,
"community_rank_name": context_config.community_rank_name,
"include_community_weight": context_config.include_community_weight,
"community_weight_name": context_config.community_weight_name,
"normalize_community_weight": context_config.normalize_community_weight,
"max_tokens": context_config.max_data_tokens,
"context_name": "Reports",
}

map_llm_params = {
"max_tokens": mapreduce_config.map_max_tokens,
"temperature": mapreduce_config.map_temperature,
"response_format": {"type": "json_object"},
}

reduce_llm_params = {
"max_tokens": mapreduce_config.reduce_max_tokens,
"temperature": mapreduce_config.reduce_temperature,
}

self._search_engine = GlobalSearch(
llm=self._llm,
context_builder=context_builder,
token_encoder=token_encoder,
max_data_tokens=context_config.max_data_tokens,
map_llm_params=map_llm_params,
reduce_llm_params=reduce_llm_params,
allow_general_knowledge=mapreduce_config.allow_general_knowledge,
json_mode=mapreduce_config.json_mode,
context_builder_params=context_builder_params,
concurrent_coroutines=32,
response_type=mapreduce_config.response_type,
)

async def run(self, args: GlobalSearchToolArgs, cancellation_token: CancellationToken) -> GlobalSearchToolReturn:
result = await self._search_engine.asearch(args.query)
assert isinstance(result.response, str), "Expected response to be a string"
return GlobalSearchToolReturn(answer=result.response)

@classmethod
def from_settings(cls, settings_path: str | Path) -> "GlobalSearchTool":
"""Create a GlobalSearchTool instance from GraphRAG settings file.

Args:
settings_path: Path to the GraphRAG settings.yaml file

Returns:
An initialized GlobalSearchTool instance
"""
# Load GraphRAG config
config = load_config_from_file(settings_path)

# Initialize token encoder
token_encoder = tiktoken.get_encoding(config.encoding_model)

# Initialize LLM using graphrag's get_client
llm = get_llm(config)

# Create data config from storage paths
data_config = DataConfig(
input_dir=str(Path(config.storage.base_dir)),
)

return cls(
token_encoder=token_encoder,
llm=llm,
data_config=data_config,
context_config=_default_context_config,
mapreduce_config=_default_mapreduce_config,
)
Loading
Loading