This repository has been archived by the owner on Feb 27, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathconvolutional_encoder.py
146 lines (122 loc) · 5.89 KB
/
convolutional_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#####################################################################################
# MIT License #
# #
# Copyright (C) 2019 Charly Lamothe #
# #
# This file is part of VQ-VAE-Speech. #
# #
# Permission is hereby granted, free of charge, to any person obtaining a copy #
# of this software and associated documentation files (the "Software"), to deal #
# in the Software without restriction, including without limitation the rights #
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #
# copies of the Software, and to permit persons to whom the Software is #
# furnished to do so, subject to the following conditions: #
# #
# The above copyright notice and this permission notice shall be included in all #
# copies or substantial portions of the Software. #
# #
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #
# SOFTWARE. #
#####################################################################################
from modules.residual_stack import ResidualStack
from modules.conv1d_builder import Conv1DBuilder
from error_handling.console_logger import ConsoleLogger
import torch
import torch.nn as nn
import torch.nn.functional as F
class ConvolutionalEncoder(nn.Module):
def __init__(self, in_channels, num_hiddens, num_residual_layers, num_residual_hiddens,
use_kaiming_normal, input_features_type, features_filters, sampling_rate,
device, verbose=False):
super(ConvolutionalEncoder, self).__init__()
"""
2 preprocessing convolution layers with filter length 3
and residual connections.
"""
self._conv_1 = Conv1DBuilder.build(
in_channels=features_filters,
out_channels=num_hiddens,
kernel_size=3,
use_kaiming_normal=use_kaiming_normal,
padding=1
)
self._conv_2 = Conv1DBuilder.build(
in_channels=num_hiddens,
out_channels=num_hiddens,
kernel_size=3,
use_kaiming_normal=use_kaiming_normal,
padding=1
)
"""
1 strided convolution length reduction layer with filter
length 4 and stride 2 (downsampling the signal by a factor
of two).
"""
self._conv_3 = Conv1DBuilder.build(
in_channels=num_hiddens,
out_channels=num_hiddens,
kernel_size=4,
stride=2, # timestep * 2
use_kaiming_normal=use_kaiming_normal,
padding=2
)
"""
2 convolutional layers with length 3 and
residual connections.
"""
self._conv_4 = Conv1DBuilder.build(
in_channels=num_hiddens,
out_channels=num_hiddens,
kernel_size=3,
use_kaiming_normal=use_kaiming_normal,
padding=1
)
self._conv_5 = Conv1DBuilder.build(
in_channels=num_hiddens,
out_channels=num_hiddens,
kernel_size=3,
use_kaiming_normal=use_kaiming_normal,
padding=1
)
"""
4 feedforward ReLu layers with residual connections.
"""
self._residual_stack = ResidualStack(
in_channels=num_hiddens,
num_hiddens=num_hiddens,
num_residual_layers=num_residual_layers,
num_residual_hiddens=num_residual_hiddens,
use_kaiming_normal=use_kaiming_normal
)
self._input_features_type = input_features_type
self._features_filters = features_filters
self._sampling_rate = sampling_rate
self._device = device
self._verbose = verbose
def forward(self, inputs):
if self._verbose:
ConsoleLogger.status('inputs size: {}'.format(inputs.size()))
x_conv_1 = F.relu(self._conv_1(inputs))
if self._verbose:
ConsoleLogger.status('x_conv_1 output size: {}'.format(x_conv_1.size()))
x = F.relu(self._conv_2(x_conv_1)) + x_conv_1
if self._verbose:
ConsoleLogger.status('_conv_2 output size: {}'.format(x.size()))
x_conv_3 = F.relu(self._conv_3(x))
if self._verbose:
ConsoleLogger.status('_conv_3 output size: {}'.format(x_conv_3.size()))
x_conv_4 = F.relu(self._conv_4(x_conv_3)) + x_conv_3
if self._verbose:
ConsoleLogger.status('_conv_4 output size: {}'.format(x_conv_4.size()))
x_conv_5 = F.relu(self._conv_5(x_conv_4)) + x_conv_4
if self._verbose:
ConsoleLogger.status('x_conv_5 output size: {}'.format(x_conv_5.size()))
x = self._residual_stack(x_conv_5) + x_conv_5
if self._verbose:
ConsoleLogger.status('_residual_stack output size: {}'.format(x.size()))
return x