-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmeta_neural_net.py
97 lines (81 loc) · 3.14 KB
/
meta_neural_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import argparse
import itertools
import os
import random
import sys
import numpy as np
from matplotlib import pyplot as plt
from tensorflow import keras
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import Adam
def mle_loss(y_true, y_pred):
# Minimum likelihood estimate loss function
mean = tf.slice(y_pred, [0, 0], [-1, 1])
var = tf.slice(y_pred, [0, 1], [-1, 1])
return 0.5 * tf.log(2*np.pi*var) + tf.square(y_true - mean) / (2*var)
def mape_loss(y_true, y_pred):
# Minimum absolute percentage error loss function
lower_bound = 4.5
fraction = tf.math.divide(tf.subtract(y_pred, lower_bound), \
tf.subtract(y_true, lower_bound))
return tf.abs(tf.subtract(fraction, 1))
class MetaNeuralnet:
def get_dense_model(self,
input_dims,
num_layers,
layer_width,
loss,
regularization):
input_layer = keras.layers.Input(input_dims)
model = keras.models.Sequential()
for _ in range(num_layers):
model.add(keras.layers.Dense(layer_width, activation='relu'))
model = model(input_layer)
if loss == 'mle':
mean = keras.layers.Dense(1)(model)
var = keras.layers.Dense(1)(model)
var = keras.layers.Activation(tf.math.softplus)(var)
output = keras.layers.concatenate([mean, var])
else:
if regularization == 0:
output = keras.layers.Dense(1)(model)
else:
reg = keras.regularizers.l1(regularization)
output = keras.layers.Dense(1, kernel_regularizer=reg)(model)
dense_net = keras.models.Model(inputs=input_layer, outputs=output)
return dense_net
def fit(self, xtrain, ytrain,
num_layers=10,
layer_width=20,
loss='mae',
epochs=200,
batch_size=32,
lr=.01,
verbose=0,
regularization=0,
**kwargs):
if loss == 'mle':
loss_fn = mle_loss
elif loss == 'mape':
loss_fn = mape_loss
else:
loss_fn = 'mae'
self.model = self.get_dense_model((xtrain.shape[1],),
loss=loss_fn,
num_layers=num_layers,
layer_width=layer_width,
regularization=regularization)
optimizer = keras.optimizers.Adam(lr=lr, beta_1=.9, beta_2=.99)
self.model.compile(optimizer=optimizer, loss=loss_fn)
#print(self.model.summary())
self.model.fit(xtrain, ytrain,
batch_size=batch_size,
epochs=epochs,
verbose=verbose)
train_pred = np.squeeze(self.model.predict(xtrain))
train_error = np.mean(abs(train_pred-ytrain))
return train_error
def predict(self, xtest):
return self.model.predict(xtest)