-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbasic models changing seed.R
86 lines (62 loc) · 2.37 KB
/
basic models changing seed.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#Load File, Load Packages
bank<-read.csv("bank-additional-full.csv",header=TRUE,sep=";")
library(rminer)
#Create artificial time-axis beforehand though. The website noted that the values were chronologi-
#cally sorted. Therefore a simple itemnumber identifies a chronology.
time_axis <- as.numeric(rownames(bank))
bank_time <- cbind(bank, time_axis)
#Set modeling techniques, for more information see description in rminer documentation
models_name <- rbind("Decision Tree", "Support Vector Machine", "Neural Network", "LOGIT")
models_specs <-rbind("ctree","ksvm","mlp","lr")
models <- cbind(models_name, models_specs)
colnames(models) <- c("Name", "Model")
#Variable prep
C0_t <- vector(mode="numeric", length=0)
C1_t <- vector(mode="numeric", length=0)
C2_t <- vector(mode="numeric", length=0)
C3_t <- vector(mode="numeric", length=0)
C4_t <- vector(mode="character", length=0)
C5_t <- vector(mode="character", length=0)
C6_t <- vector(mode="numeric", length=0)
# Hold-out (train, test sets)
H=holdout(bank_time$y,ratio=2/3)
#----------------------Modeling----------------------------#
for (a in 1:20) {
for (i in seq_len(nrow(models))) {
# Setting seed
set.seed(a)
#Modeling
M=fit(y~.,bank_time[H$tr,], model = models[i,2], task="class")
M2=fit(y~.,bank_time[H$tr,], model = models[i,2], task="prob")
# Creating variables model
P=predict(M,bank_time[H$ts,])
P2=predict(M2,bank_time[H$ts,])
#Title
cat(paste("----- Results for model", models[i,1], "-----", "\n"))
# AUC of ROC
cat(paste("AUC for ROC for model", models[i,1], "= "))
cat(mmetric(bank_time$y[H$ts],P2,"AUC"), "\n")
# AUC ALIFT
cat(paste("AUC for ALIFT model", models[i,1], "= "))
cat(mmetric(bank_time$y[H$ts],P2,"ALIFT"), "\n")
# Accuracy
cat(paste("Accuracy Pred. model", models[i,1], "= "))
cat(mmetric(bank_time$y[H$ts],P,"ACC"), "\n")
C1=mmetric(bank_time$y[H$ts],P2,metric="AUC")
C2=mmetric(bank_time$y[H$ts],P2,metric="ALIFT")
C3=mmetric(bank_time$y[H$ts],P,metric="ACC")
C4=models[i,1]
C1_t = c(C1_t,C1)
C2_t = c(C2_t,C2)
C3_t = c(C3_t,C3)
C4_t = c(C4_t,C4)
C5_t = c(C5_t,"none")
C6_t = c(C6_t,a)
}
}
holdout_dataset <- cbind(C1_t,C2_t,C3_t,C4_t,C5_t,C6_t)
colnames(holdout_dataset)<-c("AUC", "ALIFT", "ACC", "model", "Clustering", "seedNr.")
head(holdout_dataset)
write.table(holdout_dataset, "holdout_normal.txt", sep=";")
########Reset Memory
gc()