-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRolling Window2.R
105 lines (77 loc) · 2.92 KB
/
Rolling Window2.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#Load File, Load Packages
bank<-read.csv("bank-additional-full.csv",header=TRUE,sep=";")
install.packages(rminer)
library(rminer)
library(dplyr)
set.seed(1)
#Create artificial time-axis beforehand though. The website noted that the values were chronologi-
#cally sorted. Therefore a simple itemnumber identifies a chronology.
time_axis <- as.numeric(rownames(bank))
bank_time <- cbind(bank, time_axis)
#Set modeling techniques, for more information see description in rminer documentation
models <- c("lr", "ksvm", "ctree", "mlp")
#Variable prep
C0_t <- vector(mode="character", length=0)
C1_t <- vector(mode="numeric", length=0)
C2_t <- vector(mode="numeric", length=0)
C3_t <- vector(mode="numeric", length=0)
C4_t <- vector(mode="numeric", length=0)
C5_t <- vector(mode="numeric", length=0)
C6_t <- vector(mode="numeric", length=0)
C7_t <- vector(mode="numeric", length=0)
C8_t <- vector(mode="numeric", length=0)
C9_t <- vector(mode="numeric", length=0)
C10_t <- vector(mode="character", length=0)
#----------------Modeling with Rolling Window--------------------#
windowsize <- c(5000, 2000, 1500, 1000)
increments <- 500
for (ws in windowsize) {
for (i in models)
{
for(c in 1:((nrow(bank_time)-(2*ws)) %/% increments)) # iterations rolling window
{
# Window
w1 <- (1+(c-1)*increments)
w2 <- ((1+(c-1)*increments)+ws)
data <- subset(bank_time[which(bank_time$time_axis >= w1 & bank_time$time_axis <= w2), ])
#Holdout, chronology in this case is important in order to not overestimate prediction accuracy.
data_ts <- data[1:(1/3*nrow(data)),]
data_tr <- data[((1/3*nrow(data))+1):(nrow(data)),]
#Modeling and Predictions
M <- fit(y~.,data_tr,model=i, task = "prob")
P <- predict(M, data_ts, type = "prob")
#Perfomance measure
cat("---Rolling Window model", i, "with", c, "th iteration","@ window-size",ws,"---", "\n")
C1=mmetric(data_ts$y,P,metric="AUC")
C2=mmetric(data_ts$y,P,metric="ALIFT")
C3=mmetric(data_ts$y,P,metric="ACC")
#Print findings
cat("AUC of", i, ":", C1, "\n")
cat("ALIFT of", i, ":", C2, "\n")
cat("ACC of", i, ":", C3, "\n")
# Stack values
C0_t <- c(C0_t, c)
C1_t <- c(C1_t, C1)
C2_t <- c(C2_t, C2)
C3_t <- c(C3_t, C3)
C4_t <- c(C4_t, i)
C5_t <- c(C5_t, w1)
C6_t <- c(C6_t, w2)
C9_t <- c(C9_t, ws)
C10_t <- c(C10_t, "no")
data <- 0
data_tr <- 0
data_ts <- 0
gc()
} } }
cat("---time---")
print(t)
#Combine Data Frame
rolling_window_sum <- cbind(C0_t,C4_t,C1_t,C2_t,C3_t,C5_t,C6_t,C9_t, C10_t)
#Label Data Frame
colnames(rolling_window_sum) <- c("Itteration","Model","AUC", "ALIFT", "ACC", "Lower", "Upper", "Window-size", "Clustering")
#Show Table (back check)
head(rolling_window_sum)
# Write file
write.table(rolling_window_sum, "rolling_window_no_clustering.txt", sep=";")
gc()