-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathnep-0024-missing-data-2.html
766 lines (582 loc) · 44.2 KB
/
nep-0024-missing-data-2.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
<!DOCTYPE html>
<html lang="en" data-content_root="./" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<title>NEP 24 — Missing data functionality - alternative 1 to NEP 12 — NumPy Enhancement Proposals</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=03e43079" />
<!-- So that users can add custom icons -->
<script src="_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="_static/documentation_options.js?v=7f41d439"></script>
<script src="_static/doctools.js?v=888ff710"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'nep-0024-missing-data-2';</script>
<link rel="icon" href="_static/favicon.ico"/>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="NEP 25 — NA support via special dtypes" href="nep-0025-missing-data-3.html" />
<link rel="prev" title="NEP 21 — Simplified and explicit advanced indexing" href="nep-0021-advanced-indexing.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="" />
<meta name="docbuild:last-update" content="Jan 25, 2025"/>
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="content.html">
<img src="_static/numpylogo.svg" class="logo__image only-light" alt="NumPy Enhancement Proposals - Home"/>
<img src="_static/numpylogo_dark.svg" class="logo__image only-dark pst-js-only" alt="NumPy Enhancement Proposals - Home"/>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item current active">
<a class="nav-link nav-internal" href="index.html">
Index
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="scope.html">
The Scope of NumPy
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="roadmap.html">
Current roadmap
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22">
Wishlist
</a>
</li>
</ul>
</nav></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/numpy/numpy" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item current active">
<a class="nav-link nav-internal" href="index.html">
Index
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="scope.html">
The Scope of NumPy
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="roadmap.html">
Current roadmap
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22">
Wishlist
</a>
</li>
</ul>
</nav></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/numpy/numpy" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Section Navigation">
<p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p>
<div class="bd-toc-item navbar-nav"><ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="scope.html">The Scope of NumPy</a></li>
<li class="toctree-l1"><a class="reference internal" href="roadmap.html">Current roadmap</a></li>
</ul>
<ul class="current nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="meta.html">Meta-NEPs (NEPs about NEPs or active Processes)</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0000.html">NEP 0 — Purpose and process</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0023-backwards-compatibility.html">NEP 23 — Backwards compatibility and deprecation policy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0036-fair-play.html">NEP 36 — Fair play</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0045-c_style_guide.html">NEP 45 — C style guide</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0046-sponsorship-guidelines.html">NEP 46 — NumPy sponsorship guidelines</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0048-spending-project-funds.html">NEP 48 — Spending NumPy project funds</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-template.html">NEP X — Template and instructions</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="provisional.html">Provisional NEPs (provisionally accepted; interface may change)</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="simple">
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="accepted.html">Accepted NEPs (implementation in progress)</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0041-improved-dtype-support.html">NEP 41 — First step towards a new datatype system</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0042-new-dtypes.html">NEP 42 — New and extensible DTypes</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0044-restructuring-numpy-docs.html">NEP 44 — Restructuring the NumPy documentation</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0051-scalar-representation.html">NEP 51 — Changing the representation of NumPy scalars</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="open.html">Open NEPs (under consideration)</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0043-extensible-ufuncs.html">NEP 43 — Enhancing the extensibility of UFuncs</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0053-c-abi-evolution.html">NEP 53 — Evolving the NumPy C-API for NumPy 2.0</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0054-simd-cpp-highway.html">NEP 54 — SIMD infrastructure evolution: adopting Google Highway when moving to C++?</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="finished.html">Finished NEPs</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0001-npy-format.html">NEP 1 — A simple file format for NumPy arrays</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0005-generalized-ufuncs.html">NEP 5 — Generalized universal functions</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0007-datetime-proposal.html">NEP 7 — A proposal for implementing some date/time types in NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0010-new-iterator-ufunc.html">NEP 10 — Optimizing iterator/UFunc performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0013-ufunc-overrides.html">NEP 13 — A mechanism for overriding Ufuncs</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0014-dropping-python2.7-proposal.html">NEP 14 — Plan for dropping Python 2.7 support</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0015-merge-multiarray-umath.html">NEP 15 — Merging multiarray and umath</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0018-array-function-protocol.html">NEP 18 — A dispatch mechanism for NumPy's high level array functions</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0019-rng-policy.html">NEP 19 — Random number generator policy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0020-gufunc-signature-enhancement.html">NEP 20 — Expansion of generalized universal function signatures</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0022-ndarray-duck-typing-overview.html">NEP 22 — Duck typing for NumPy arrays – high level overview</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0027-zero-rank-arrarys.html">NEP 27 — Zero rank arrays</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0028-website-redesign.html">NEP 28 — numpy.org website redesign</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0029-deprecation_policy.html">NEP 29 — Recommend Python and NumPy version support as a community policy standard</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0032-remove-financial-functions.html">NEP 32 — Remove the financial functions from NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0034-infer-dtype-is-object.html">NEP 34 — Disallow inferring ``dtype=object`` from sequences</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0035-array-creation-dispatch-with-array-function.html">NEP 35 — Array creation dispatching with __array_function__</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0038-SIMD-optimizations.html">NEP 38 — Using SIMD optimization instructions for performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0040-legacy-datatype-impl.html">NEP 40 — Legacy datatype implementation in NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0049.html">NEP 49 — Data allocation strategies</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0050-scalar-promotion.html">NEP 50 — Promotion rules for Python scalars</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0052-python-api-cleanup.html">NEP 52 — Python API cleanup for NumPy 2.0</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0055-string_dtype.html">NEP 55 — Add a UTF-8 variable-width string DType to NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0056-array-api-main-namespace.html">NEP 56 — Array API standard support in NumPy's main namespace</a></li>
</ul>
</details></li>
<li class="toctree-l1 current active has-children"><a class="reference internal" href="deferred.html">Deferred and Superseded NEPs</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="nep-0002-warnfix.html">NEP 2 — A proposal to build numpy without warning with a big set of warning flags</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0003-math_config_clean.html">NEP 3 — Cleaning the math configuration of numpy.core</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0004-datetime-proposal3.html">NEP 4 — A (third) proposal for implementing some date/time types in NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0006-newbugtracker.html">NEP 6 — Replacing Trac with a different bug tracker</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0008-groupby_additions.html">NEP 8 — A proposal for adding groupby functionality to NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0009-structured_array_extensions.html">NEP 9 — Structured array extensions</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0011-deferred-ufunc-evaluation.html">NEP 11 — Deferred UFunc evaluation</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0012-missing-data.html">NEP 12 — Missing data functionality in NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0021-advanced-indexing.html">NEP 21 — Simplified and explicit advanced indexing</a></li>
<li class="toctree-l2 current active"><a class="current reference internal" href="#">NEP 24 — Missing data functionality - alternative 1 to NEP 12</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0025-missing-data-3.html">NEP 25 — NA support via special dtypes</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0026-missing-data-summary.html">NEP 26 — Summary of missing data NEPs and discussion</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0030-duck-array-protocol.html">NEP 30 — Duck typing for NumPy arrays - implementation</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0031-uarray.html">NEP 31 — Context-local and global overrides of the NumPy API</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0037-array-module.html">NEP 37 — A dispatch protocol for NumPy-like modules</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0047-array-api-standard.html">NEP 47 — Adopting the array API standard</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="rejected.html">Rejected and Withdrawn NEPs</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0016-abstract-array.html">NEP 16 — An abstract base class for identifying "duck arrays"</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0017-split-out-maskedarray.html">NEP 17 — Split out masked arrays</a></li>
</ul>
</details></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
<div class="sidebar-primary-item">
<div id="ethical-ad-placement"
class="flat"
data-ea-publisher="readthedocs"
data-ea-type="readthedocs-sidebar"
data-ea-manual="true">
</div></div>
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="content.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="index.html" class="nav-link">Roadmap & NumPy enhancement proposals</a></li>
<li class="breadcrumb-item"><a href="deferred.html" class="nav-link">Deferred and Superseded NEPs</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">NEP 24 — Missing data functionality - alternative 1 to NEP 12</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="nep-24-missing-data-functionality-alternative-1-to-nep-12">
<span id="nep24"></span><h1>NEP 24 — Missing data functionality - alternative 1 to NEP 12<a class="headerlink" href="#nep-24-missing-data-functionality-alternative-1-to-nep-12" title="Link to this heading">#</a></h1>
<dl class="field-list simple">
<dt class="field-odd">Author<span class="colon">:</span></dt>
<dd class="field-odd"><p>Nathaniel J. Smith <<a class="reference external" href="mailto:njs%40pobox.com">njs<span>@</span>pobox<span>.</span>com</a>>, Matthew Brett <<a class="reference external" href="mailto:matthew.brett%40gmail.com">matthew<span>.</span>brett<span>@</span>gmail<span>.</span>com</a>></p>
</dd>
<dt class="field-even">Status<span class="colon">:</span></dt>
<dd class="field-even"><p>Deferred</p>
</dd>
<dt class="field-odd">Type<span class="colon">:</span></dt>
<dd class="field-odd"><p>Standards Track</p>
</dd>
<dt class="field-even">Created<span class="colon">:</span></dt>
<dd class="field-even"><p>2011-06-30</p>
</dd>
</dl>
<section id="abstract">
<h2>Abstract<a class="headerlink" href="#abstract" title="Link to this heading">#</a></h2>
<p><em>Context: this NEP was written as an alternative to NEP 12, which at the time of writing
had an implementation that was merged into the NumPy main branch.</em></p>
<p>The principle of this NEP is to separate the APIs for masking and for missing values, according to</p>
<ul class="simple">
<li><p>The current implementation of masked arrays (NEP 12)</p></li>
<li><p>This proposal.</p></li>
</ul>
<p>This discussion is only of the API, and not of the implementation.</p>
</section>
<section id="detailed-description">
<h2>Detailed description<a class="headerlink" href="#detailed-description" title="Link to this heading">#</a></h2>
<section id="rationale">
<h3>Rationale<a class="headerlink" href="#rationale" title="Link to this heading">#</a></h3>
<p>The purpose of this NEP is to define two interfaces – one for handling
‘missing values’, and one for handling ‘masked arrays’.</p>
<p>An ordinary value is something like an integer or a floating point number. A
<em>missing</em> value is a placeholder for an ordinary value that is for some
reason unavailable. For example, in working with statistical data, we often
build tables in which each row represents one item, and each column
represents properties of that item. For instance, we might take a group of
people and for each one record height, age, education level, and income, and
then stick these values into a table. But then we discover that our research
assistant screwed up and forgot to record the age of one of our individuals.
We could throw out the rest of their data as well, but this would be
wasteful; even such an incomplete row is still perfectly usable for some
analyses (e.g., we can compute the correlation of height and income). The
traditional way to handle this would be to stick some particular meaningless
value in for the missing data, e.g., recording this person’s age as 0. But
this is very error prone; we may later forget about these special values
while running other analyses, and discover to our surprise that babies have
higher incomes than teenagers. (In this case, the solution would be to just
leave out all the items where we have no age recorded, but this isn’t a
general solution; many analyses require something more clever to handle
missing values.) So instead of using an ordinary value like 0, we define a
special “missing” value, written “NA” for “not available”.</p>
<p>Therefore, missing values have the following properties: Like any other
value, they must be supported by your array’s dtype – you can’t store a
floating point number in an array with dtype=int32, and you can’t store an NA
in it either. You need an array with dtype=NAint32 or something (exact syntax
to be determined). Otherwise, they act exactly like any other values. In
particular, you can apply arithmetic functions and so forth to them. By
default, any function which takes an NA as an argument always returns an NA
as well, regardless of the values of the other arguments. This ensures that
if we try to compute the correlation of income with age, we will get “NA”,
meaning “given that some of the entries could be anything, the answer could
be anything as well”. This reminds us to spend a moment thinking about how we
should rephrase our question to be more meaningful. And as a convenience for
those times when you do decide that you just want the correlation between the
known ages and income, then you can enable this behavior by adding a single
argument to your function call.</p>
<p>For floating point computations, NAs and NaNs have (almost?) identical
behavior. But they represent different things – NaN an invalid computation
like 0/0, NA a value that is not available – and distinguishing between
these things is useful because in some situations they should be treated
differently. (For example, an imputation procedure should replace NAs with
imputed values, but probably should leave NaNs alone.) And anyway, we can’t
use NaNs for integers, or strings, or booleans, so we need NA anyway, and
once we have NA support for all these types, we might as well support it for
floating point too for consistency.</p>
<p>A masked array is, conceptually, an ordinary rectangular numpy array, which
has had an arbitrarily-shaped mask placed over it. The result is,
essentially, a non-rectangular view of a rectangular array. In principle,
anything you can accomplish with a masked array could also be accomplished by
explicitly keeping a regular array and a boolean mask array and using numpy
indexing to combine them for each operation, but combining them into a single
structure is much more convenient when you need to perform complex operations
on the masked view of an array, while still being able to manipulate the mask
in the usual ways. Therefore, masks are preserved through indexing, and
functions generally treat masked-out values as if they were not even part of
the array in the first place. (Maybe this is a good heuristic: a length-4
array in which the last value has been masked out behaves just like an
ordinary length-3 array, so long as you don’t change the mask.) Except, of
course, that you are free to manipulate the mask in arbitrary ways whenever
you like; it’s just a standard numpy array.</p>
<p>There are some simple situations where one could use either of these tools to
get the job done – or other tools entirely, like using designated surrogate
values (age=0), separate mask arrays, etc. But missing values are designed to
be particularly helpful in situations where the missingness is an intrinsic
feature of the data – where there’s a specific value that <strong>should</strong> exist,
if it did exist we’d it’d mean something specific, but it <strong>doesn’t</strong>. Masked
arrays are designed to be particularly helpful in situations where we just
want to temporarily ignore some data that does exist, or generally when we
need to work with data that has a non-rectangular shape (e.g., if you make
some measurement at each point on a grid laid over a circular agar dish, then
the points that fall outside the dish aren’t missing measurements, they’re
just meaningless).</p>
</section>
<section id="initialization">
<h3>Initialization<a class="headerlink" href="#initialization" title="Link to this heading">#</a></h3>
<p>First, missing values can be set and be displayed as <code class="docutils literal notranslate"><span class="pre">np.NA,</span> <span class="pre">NA</span></code>:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">NA</span><span class="p">,</span> <span class="mf">7.0</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">'NA[f8]'</span><span class="p">)</span>
<span class="go">array([1., 2., NA, 7.], dtype='NA[<f8]')</span>
</pre></div>
</div>
<p>As the initialization is not ambiguous, this can be written without the NA
dtype:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">NA</span><span class="p">,</span> <span class="mf">7.0</span><span class="p">])</span>
<span class="go">array([1., 2., NA, 7.], dtype='NA[<f8]')</span>
</pre></div>
</div>
<p>Masked values can be set and be displayed as <code class="docutils literal notranslate"><span class="pre">np.IGNORE,</span> <span class="pre">IGNORE</span></code>:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">IGNORE</span><span class="p">,</span> <span class="mf">7.0</span><span class="p">],</span> <span class="n">masked</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="go">array([1., 2., IGNORE, 7.], masked=True)</span>
</pre></div>
</div>
<p>As the initialization is not ambiguous, this can be written without
<code class="docutils literal notranslate"><span class="pre">masked=True</span></code>:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">IGNORE</span><span class="p">,</span> <span class="mf">7.0</span><span class="p">])</span>
<span class="go">array([1., 2., IGNORE, 7.], masked=True)</span>
</pre></div>
</div>
</section>
<section id="ufuncs">
<h3>Ufuncs<a class="headerlink" href="#ufuncs" title="Link to this heading">#</a></h3>
<p>By default, NA values propagate:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">na_arr</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">NA</span><span class="p">,</span> <span class="mf">7.0</span><span class="p">])</span>
<span class="gp">>>> </span><span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">na_arr</span><span class="p">)</span>
<span class="go">NA('float64')</span>
</pre></div>
</div>
<p>unless the <code class="docutils literal notranslate"><span class="pre">skipna</span></code> flag is set:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">na_arr</span><span class="p">,</span> <span class="n">skipna</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="go">10.0</span>
</pre></div>
</div>
<p>By default, masking does not propagate:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">masked_arr</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">IGNORE</span><span class="p">,</span> <span class="mf">7.0</span><span class="p">])</span>
<span class="gp">>>> </span><span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">masked_arr</span><span class="p">)</span>
<span class="go">10.0</span>
</pre></div>
</div>
<p>unless the <code class="docutils literal notranslate"><span class="pre">propmask</span></code> flag is set:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">masked_arr</span><span class="p">,</span> <span class="n">propmask</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="go">IGNORE</span>
</pre></div>
</div>
<p>An array can be masked, and contain NA values:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">both_arr</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">IGNORE</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">NA</span><span class="p">,</span> <span class="mf">7.0</span><span class="p">])</span>
</pre></div>
</div>
<p>In the default case, the behavior is obvious:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">both_arr</span><span class="p">)</span>
<span class="go">NA('float64')</span>
</pre></div>
</div>
<p>It’s also obvious what to do with <code class="docutils literal notranslate"><span class="pre">skipna=True</span></code>:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">both_arr</span><span class="p">,</span> <span class="n">skipna</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="go">10.0</span>
<span class="gp">>>> </span><span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">both_arr</span><span class="p">,</span> <span class="n">skipna</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">propmask</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="go">IGNORE</span>
</pre></div>
</div>
<p>To break the tie between NA and MSK, NAs propagate harder:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">both_arr</span><span class="p">,</span> <span class="n">propmask</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="go">NA('float64')</span>
</pre></div>
</div>
</section>
<section id="assignment">
<h3>Assignment<a class="headerlink" href="#assignment" title="Link to this heading">#</a></h3>
<p>is obvious in the NA case:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">arr</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">,</span> <span class="mf">7.0</span><span class="p">])</span>
<span class="gp">>>> </span><span class="n">arr</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">NA</span>
<span class="go">TypeError('dtype does not support NA')</span>
<span class="gp">>>> </span><span class="n">na_arr</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">,</span> <span class="mf">7.0</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">'NA[f8]'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">na_arr</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">NA</span>
<span class="gp">>>> </span><span class="n">na_arr</span>
<span class="go">array([1., 2., NA], dtype='NA[<f8]')</span>
</pre></div>
</div>
<p>Direct assignment in the masked case is magic and confusing, and so happens only
via the mask:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">masked_array</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">,</span> <span class="mf">7.0</span><span class="p">],</span> <span class="n">masked</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">masked_arr</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">NA</span>
<span class="go">TypeError('dtype does not support NA')</span>
<span class="gp">>>> </span><span class="n">masked_arr</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">IGNORE</span>
<span class="go">TypeError('float() argument must be a string or a number')</span>
<span class="gp">>>> </span><span class="n">masked_arr</span><span class="o">.</span><span class="n">visible</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="kc">False</span>
<span class="gp">>>> </span><span class="n">masked_arr</span>
<span class="go">array([1., 2., IGNORE], masked=True)</span>
</pre></div>
</div>
</section>
</section>
<section id="copyright">
<h2>Copyright<a class="headerlink" href="#copyright" title="Link to this heading">#</a></h2>
<p>This document has been placed in the public domain.</p>
</section>
</section>
</article>
</div>
<dialog id="pst-secondary-sidebar-modal"></dialog>
<div id="pst-secondary-sidebar" class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
<div class="sidebar-secondary-item">
<div
id="pst-page-navigation-heading-2"
class="page-toc tocsection onthispage">
<i class="fa-solid fa-list"></i> On this page
</div>
<nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#abstract">Abstract</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#detailed-description">Detailed description</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#rationale">Rationale</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#initialization">Initialization</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#ufuncs">Ufuncs</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#assignment">Assignment</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#copyright">Copyright</a></li>
</ul>
</nav></div>
</div></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<p class="copyright">
© Copyright 2017-2025, NumPy Developers.
<br/>
</p>
</div>
<div class="footer-item">
<p class="sphinx-version">
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 7.2.6.
<br/>
</p>
</div>
</div>
<div class="footer-items__end">
<div class="footer-item">
<p class="theme-version">
<!-- # L10n: Setting the PST URL as an argument as this does not need to be localized -->
Built with the <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">PyData Sphinx Theme</a> 0.16.1.
</p></div>
</div>
</div>
</footer>
</body>
</html>