-
Notifications
You must be signed in to change notification settings - Fork 151
/
Copy pathbenchmark.py
executable file
·365 lines (318 loc) · 12.5 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import io
import os
import platform
import re
import sqlite3
from collections import OrderedDict
from datetime import datetime
from random import choice
from subprocess import check_output
from time import time
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "settings")
import django
django.setup()
import matplotlib.pyplot as plt
import pandas as pd
import psycopg2
from django.conf import settings
from django.contrib.auth.models import Group, User
from django.core.cache import caches
from django.db import connection, connections
from django.test.utils import CaptureQueriesContext, override_settings
from django.utils.encoding import force_text
from MySQLdb import _mysql
import cachalot
from cachalot.api import invalidate
from cachalot.tests.models import Test
RESULTS_PATH = f"benchmark/docs/{datetime.now().date()}/"
CONTEXTS = ("Control", "Cold cache", "Hot cache")
DIVIDER = "divider"
LINUX_DATA_PATH = "/var/lib/"
DISK_DATA_RE = re.compile(r'^MODEL="(.*)" MOUNTPOINT="(.*)"$')
def get_disk_model_for_path_linux(path):
out = force_text(check_output(["lsblk", "-Po", "MODEL,MOUNTPOINT"]))
mount_points = []
previous_model = None
for model, mount_point in [
DISK_DATA_RE.match(line).groups() for line in out.split("\n") if line
]:
if model:
previous_model = model.strip()
if mount_point:
mount_points.append((previous_model, mount_point))
mount_points = sorted(mount_points, key=lambda t: -len(t[1]))
for model, mount_point in mount_points:
if path.startswith(mount_point):
return model
def write_conditions():
versions = OrderedDict()
distribution = platform.uname()
# Linux
if distribution.system == "Linux":
# CPU
with open("/proc/cpuinfo") as f:
versions["CPU"] = re.search(
r"^model name\s+: (.+)$", f.read(), flags=re.MULTILINE
).group(1)
# RAM
with open("/proc/meminfo") as f:
versions["RAM"] = re.search(
r"^MemTotal:\s+(.+)$", f.read(), flags=re.MULTILINE
).group(1)
# Disk Model
versions.update((("Disk", get_disk_model_for_path_linux(LINUX_DATA_PATH)),))
# OS
versions["Linux distribution"] = f"{distribution.system} {distribution.release}"
# Darwin
else:
# CPU
versions["CPU"] = os.popen("sysctl -n machdep.cpu.brand_string").read().rstrip("\n")
# RAM
versions["RAM"] = os.popen("sysctl -n hw.memsize").read().rstrip("\n")
# Disk Model
versions["DISK"] = os.popen(
"diskutil info /dev/disk0 | grep 'Device / Media Name'"
).read().split(":")[1].rstrip("\n").lstrip(" ")
# OS
versions["OS"] = f"{distribution.system} {distribution.release}"
versions.update(
(
("Python", platform.python_version()),
("Django", django.__version__),
("cachalot", cachalot.__version__),
("sqlite", sqlite3.sqlite_version),
)
)
# PostgreSQL
try:
with connections["postgresql"].cursor() as cursor:
cursor.execute("SELECT version();")
versions["PostgreSQL"] = re.match(
r"^PostgreSQL\s+(\S+)\s", cursor.fetchone()[0]
).group(1)
except django.db.utils.OperationalError:
raise django.db.utils.OperationalError(
"You need a PostgreSQL DB called \"cachalot\" first. "
"Login with \"psql -U postgres -h localhost\" and run: "
"CREATE DATABASE cachalot;"
)
# MySQL
try:
with connections["mysql"].cursor() as cursor:
cursor.execute("SELECT version();")
versions["MySQL"] = cursor.fetchone()[0].split("-")[0]
except django.db.utils.OperationalError:
raise django.db.utils.OperationalError(
"You need a MySQL DB called \"cachalot\" first. "
"Login with \"mysql -u root\" and run: CREATE DATABASE cachalot;"
)
# Redis
out = force_text(check_output(["redis-cli", "INFO", "server"])).replace("\r", "")
versions["Redis"] = re.search(
r"^redis_version:([\d\.]+)$", out, flags=re.MULTILINE
).group(1)
# memcached
out = force_text(check_output(["memcached", "-h"]))
versions["memcached"] = re.match(
r"^memcached ([\d\.]+)$", out, flags=re.MULTILINE
).group(1)
versions.update(
(
("psycopg2", psycopg2.__version__.split()[0]),
("mysqlclient", _mysql.__version__),
)
)
with io.open(os.path.join(RESULTS_PATH, "conditions.rst"), "w") as f:
f.write(
"In this benchmark, a small database is generated, "
"and each test is executed %s times "
"under the following conditions:\n\n" % Benchmark.n
)
def write_table_sep(char="="):
f.write((char * 20) + " " + (char * 50) + "\n")
write_table_sep()
for k, v in versions.items():
f.write(k.ljust(20) + " " + v + "\n")
write_table_sep()
class AssertNumQueries(CaptureQueriesContext):
def __init__(self, n, using=None):
self.n = n
self.using = using
super(AssertNumQueries, self).__init__(self.get_connection())
def get_connection(self):
if self.using is None:
return connection
return connections[self.using]
def __exit__(self, exc_type, exc_val, exc_tb):
super(AssertNumQueries, self).__exit__(exc_type, exc_val, exc_tb)
if len(self) != self.n:
print(
"The amount of queries should be %s, but %s were captured."
% (self.n, len(self))
)
class Benchmark(object):
n = 20
def __init__(self):
self.data = []
def bench_once(self, context, num_queries, invalidate_before=False):
for _ in range(self.n):
if invalidate_before:
invalidate(db_alias=self.db_alias)
with AssertNumQueries(num_queries, using=self.db_alias):
start = time()
self.query_function(self.db_alias)
end = time()
self.data.append(
{
"query": self.query_name,
"time": end - start,
"context": context,
"db": self.db_vendor,
"cache": self.cache_name,
}
)
def benchmark(self, query_str, to_list=True, num_queries=1):
# Clears the cache before a single benchmark to ensure the same
# conditions across single benchmarks.
caches[settings.CACHALOT_CACHE].clear()
self.query_name = query_str
query_str = "Test.objects.using(using)" + query_str
if to_list:
query_str = "list(%s)" % query_str
self.query_function = eval("lambda using: " + query_str)
with override_settings(CACHALOT_ENABLED=False):
self.bench_once(CONTEXTS[0], num_queries)
self.bench_once(CONTEXTS[1], num_queries, invalidate_before=True)
self.bench_once(CONTEXTS[2], 0)
def execute_benchmark(self):
self.benchmark(".count()", to_list=False)
self.benchmark(".first()", to_list=False)
self.benchmark("[:10]")
self.benchmark("[5000:5010]")
self.benchmark(".filter(name__icontains='e')[0:10]")
self.benchmark(".filter(name__icontains='e')[5000:5010]")
self.benchmark(".order_by('owner')[0:10]")
self.benchmark(".order_by('owner')[5000:5010]")
self.benchmark(".select_related('owner')[0:10]")
self.benchmark(".select_related('owner')[5000:5010]")
self.benchmark(".prefetch_related('owner__groups')[0:10]", num_queries=3)
self.benchmark(".prefetch_related('owner__groups')[5000:5010]", num_queries=3)
def run(self):
for db_alias in settings.DATABASES:
self.db_alias = db_alias
self.db_vendor = connections[self.db_alias].vendor
print("Benchmarking %s…" % self.db_vendor)
for cache_alias in settings.CACHES:
cache = caches[cache_alias]
self.cache_name = cache.__class__.__name__[:-5].lower()
with override_settings(CACHALOT_CACHE=cache_alias):
self.execute_benchmark()
self.df = pd.DataFrame.from_records(self.data)
if not os.path.exists(RESULTS_PATH):
os.mkdir(RESULTS_PATH)
self.df.to_csv(os.path.join(RESULTS_PATH, "data.csv"))
self.xlim = (0, self.df["time"].max() * 1.01)
self.output("db")
self.output("cache")
def output(self, param):
gp = self.df.groupby(["context", "query", param])["time"]
self.means = gp.mean().unstack().unstack().reindex(CONTEXTS)
los = self.means - gp.min().unstack().unstack().reindex(CONTEXTS)
ups = gp.max().unstack().unstack().reindex(CONTEXTS) - self.means
self.errors = dict(
(
key,
dict(
(
subkey,
[
[los[key][subkey][context] for context in self.means.index],
[ups[key][subkey][context] for context in self.means.index],
],
)
for subkey in self.means.columns.levels[1]
),
)
for key in self.means.columns.levels[0]
)
self.get_perfs(param)
self.plot_detail(param)
gp = self.df.groupby(["context", param])["time"]
self.means = gp.mean().unstack().reindex(CONTEXTS)
los = self.means - gp.min().unstack().reindex(CONTEXTS)
ups = gp.max().unstack().reindex(CONTEXTS) - self.means
self.errors = [
[
[los[key][context] for context in self.means.index],
[ups[key][context] for context in self.means.index],
]
for key in self.means
]
self.plot_general(param)
def get_perfs(self, param):
with io.open(os.path.join(RESULTS_PATH, param + "_results.rst"), "w") as f:
for v in self.means.columns.levels[0]:
g = self.means[v].mean(axis=1)
perf = "%s is %.1f× slower then %.1f× faster" % (
v.ljust(10),
g[CONTEXTS[1]] / g[CONTEXTS[0]],
g[CONTEXTS[0]] / g[CONTEXTS[2]],
)
print(perf)
f.write("- %s\n" % perf)
def plot_detail(self, param):
for v in self.means.columns.levels[0]:
plt.figure()
axes = self.means[v].plot(
kind="barh",
xerr=self.errors[v],
xlim=self.xlim,
figsize=(15, 15),
subplots=True,
layout=(6, 2),
sharey=True,
legend=False,
)
plt.gca().invert_yaxis()
for row in axes:
for ax in row:
ax.xaxis.grid(True)
ax.set_ylabel("")
ax.set_xlabel("Time (s)")
plt.savefig(os.path.join(RESULTS_PATH, "%s_%s.svg" % (param, v)))
def plot_general(self, param):
plt.figure()
ax = self.means.plot(kind="barh", xerr=self.errors, xlim=self.xlim)
ax.invert_yaxis()
ax.xaxis.grid(True)
ax.set_ylabel("")
ax.set_xlabel("Time (s)")
plt.savefig(os.path.join(RESULTS_PATH, "%s.svg" % param))
def create_data(using):
User.objects.using(using).bulk_create(
[User(username="user%d" % i) for i in range(50)]
)
Group.objects.using(using).bulk_create(
[Group(name="test%d" % i) for i in range(10)]
)
groups = list(Group.objects.using(using))
for u in User.objects.using(using):
u.groups.add(choice(groups), choice(groups))
users = list(User.objects.using(using))
Test.objects.using(using).bulk_create(
[Test(name="test%d" % i, owner=choice(users)) for i in range(10000)]
)
if __name__ == "__main__":
if not os.path.exists(RESULTS_PATH):
os.mkdir(RESULTS_PATH)
write_conditions()
old_db_names = {}
for alias in connections:
conn = connections[alias]
old_db_names[alias] = conn.settings_dict["NAME"]
conn.creation.create_test_db(autoclobber=True)
print("Populating %s…" % connections[alias].vendor)
create_data(alias)
Benchmark().run()
for alias in connections:
connections[alias].creation.destroy_test_db(old_db_names[alias])