From edcae7a5f160e8b55c9734732ce8f281a1913acd Mon Sep 17 00:00:00 2001 From: Aisuko Date: Sun, 5 Nov 2023 08:41:48 +0000 Subject: [PATCH 1/3] Add sam support Signed-off-by: GitHub --- extra/grpc/sam/Makefile | 11 + extra/grpc/sam/README.md | 5 + extra/grpc/sam/backend_pb2.py | 61 +++++ extra/grpc/sam/backend_pb2_grpc.py | 363 +++++++++++++++++++++++++++++ extra/grpc/sam/run.sh | 13 ++ extra/grpc/sam/sam.py | 214 +++++++++++++++++ extra/grpc/sam/sam.yml | 61 +++++ extra/requirements.txt | 7 - 8 files changed, 728 insertions(+), 7 deletions(-) create mode 100644 extra/grpc/sam/Makefile create mode 100644 extra/grpc/sam/README.md create mode 100644 extra/grpc/sam/backend_pb2.py create mode 100644 extra/grpc/sam/backend_pb2_grpc.py create mode 100755 extra/grpc/sam/run.sh create mode 100644 extra/grpc/sam/sam.py create mode 100644 extra/grpc/sam/sam.yml delete mode 100644 extra/requirements.txt diff --git a/extra/grpc/sam/Makefile b/extra/grpc/sam/Makefile new file mode 100644 index 000000000000..68dac7731d5d --- /dev/null +++ b/extra/grpc/sam/Makefile @@ -0,0 +1,11 @@ +.PONY: sam +sam: + @echo "Creating virtual environment..." + @conda env create --name sam --file sam.yml + @echo "Virtual environment created." + +.PONY: run +run: + @echo "Running sam..." + bash run.sh + @echo "sam run." \ No newline at end of file diff --git a/extra/grpc/sam/README.md b/extra/grpc/sam/README.md new file mode 100644 index 000000000000..2ad723ac9570 --- /dev/null +++ b/extra/grpc/sam/README.md @@ -0,0 +1,5 @@ +# Creating a separate environment for the sam project + +``` +make sam +``` \ No newline at end of file diff --git a/extra/grpc/sam/backend_pb2.py b/extra/grpc/sam/backend_pb2.py new file mode 100644 index 000000000000..12e8bf51e157 --- /dev/null +++ b/extra/grpc/sam/backend_pb2.py @@ -0,0 +1,61 @@ +# -*- coding: utf-8 -*- +# Generated by the protocol buffer compiler. DO NOT EDIT! +# source: backend.proto +"""Generated protocol buffer code.""" +from google.protobuf import descriptor as _descriptor +from google.protobuf import descriptor_pool as _descriptor_pool +from google.protobuf import symbol_database as _symbol_database +from google.protobuf.internal import builder as _builder +# @@protoc_insertion_point(imports) + +_sym_db = _symbol_database.Default() + + + + +DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\rbackend.proto\x12\x07\x62\x61\x63kend\"\x0f\n\rHealthMessage\"\x96\x06\n\x0ePredictOptions\x12\x0e\n\x06Prompt\x18\x01 \x01(\t\x12\x0c\n\x04Seed\x18\x02 \x01(\x05\x12\x0f\n\x07Threads\x18\x03 \x01(\x05\x12\x0e\n\x06Tokens\x18\x04 \x01(\x05\x12\x0c\n\x04TopK\x18\x05 \x01(\x05\x12\x0e\n\x06Repeat\x18\x06 \x01(\x05\x12\r\n\x05\x42\x61tch\x18\x07 \x01(\x05\x12\r\n\x05NKeep\x18\x08 \x01(\x05\x12\x13\n\x0bTemperature\x18\t \x01(\x02\x12\x0f\n\x07Penalty\x18\n \x01(\x02\x12\r\n\x05\x46\x31\x36KV\x18\x0b \x01(\x08\x12\x11\n\tDebugMode\x18\x0c \x01(\x08\x12\x13\n\x0bStopPrompts\x18\r \x03(\t\x12\x11\n\tIgnoreEOS\x18\x0e \x01(\x08\x12\x19\n\x11TailFreeSamplingZ\x18\x0f \x01(\x02\x12\x10\n\x08TypicalP\x18\x10 \x01(\x02\x12\x18\n\x10\x46requencyPenalty\x18\x11 \x01(\x02\x12\x17\n\x0fPresencePenalty\x18\x12 \x01(\x02\x12\x10\n\x08Mirostat\x18\x13 \x01(\x05\x12\x13\n\x0bMirostatETA\x18\x14 \x01(\x02\x12\x13\n\x0bMirostatTAU\x18\x15 \x01(\x02\x12\x12\n\nPenalizeNL\x18\x16 \x01(\x08\x12\x11\n\tLogitBias\x18\x17 \x01(\t\x12\r\n\x05MLock\x18\x19 \x01(\x08\x12\x0c\n\x04MMap\x18\x1a \x01(\x08\x12\x16\n\x0ePromptCacheAll\x18\x1b \x01(\x08\x12\x15\n\rPromptCacheRO\x18\x1c \x01(\x08\x12\x0f\n\x07Grammar\x18\x1d \x01(\t\x12\x0f\n\x07MainGPU\x18\x1e \x01(\t\x12\x13\n\x0bTensorSplit\x18\x1f \x01(\t\x12\x0c\n\x04TopP\x18 \x01(\x02\x12\x17\n\x0fPromptCachePath\x18! \x01(\t\x12\r\n\x05\x44\x65\x62ug\x18\" \x01(\x08\x12\x17\n\x0f\x45mbeddingTokens\x18# \x03(\x05\x12\x12\n\nEmbeddings\x18$ \x01(\t\x12\x14\n\x0cRopeFreqBase\x18% \x01(\x02\x12\x15\n\rRopeFreqScale\x18& \x01(\x02\x12\x1b\n\x13NegativePromptScale\x18\' \x01(\x02\x12\x16\n\x0eNegativePrompt\x18( \x01(\t\x12\x0e\n\x06NDraft\x18) \x01(\x05\"\x18\n\x05Reply\x12\x0f\n\x07message\x18\x01 \x01(\x0c\"\x86\x06\n\x0cModelOptions\x12\r\n\x05Model\x18\x01 \x01(\t\x12\x13\n\x0b\x43ontextSize\x18\x02 \x01(\x05\x12\x0c\n\x04Seed\x18\x03 \x01(\x05\x12\x0e\n\x06NBatch\x18\x04 \x01(\x05\x12\x11\n\tF16Memory\x18\x05 \x01(\x08\x12\r\n\x05MLock\x18\x06 \x01(\x08\x12\x0c\n\x04MMap\x18\x07 \x01(\x08\x12\x11\n\tVocabOnly\x18\x08 \x01(\x08\x12\x0f\n\x07LowVRAM\x18\t \x01(\x08\x12\x12\n\nEmbeddings\x18\n \x01(\x08\x12\x0c\n\x04NUMA\x18\x0b \x01(\x08\x12\x12\n\nNGPULayers\x18\x0c \x01(\x05\x12\x0f\n\x07MainGPU\x18\r \x01(\t\x12\x13\n\x0bTensorSplit\x18\x0e \x01(\t\x12\x0f\n\x07Threads\x18\x0f \x01(\x05\x12\x19\n\x11LibrarySearchPath\x18\x10 \x01(\t\x12\x14\n\x0cRopeFreqBase\x18\x11 \x01(\x02\x12\x15\n\rRopeFreqScale\x18\x12 \x01(\x02\x12\x12\n\nRMSNormEps\x18\x13 \x01(\x02\x12\x0c\n\x04NGQA\x18\x14 \x01(\x05\x12\x11\n\tModelFile\x18\x15 \x01(\t\x12\x0e\n\x06\x44\x65vice\x18\x16 \x01(\t\x12\x11\n\tUseTriton\x18\x17 \x01(\x08\x12\x15\n\rModelBaseName\x18\x18 \x01(\t\x12\x18\n\x10UseFastTokenizer\x18\x19 \x01(\x08\x12\x14\n\x0cPipelineType\x18\x1a \x01(\t\x12\x15\n\rSchedulerType\x18\x1b \x01(\t\x12\x0c\n\x04\x43UDA\x18\x1c \x01(\x08\x12\x10\n\x08\x43\x46GScale\x18\x1d \x01(\x02\x12\x0f\n\x07IMG2IMG\x18\x1e \x01(\x08\x12\x11\n\tCLIPModel\x18\x1f \x01(\t\x12\x15\n\rCLIPSubfolder\x18 \x01(\t\x12\x10\n\x08\x43LIPSkip\x18! \x01(\x05\x12\x11\n\tTokenizer\x18\" \x01(\t\x12\x10\n\x08LoraBase\x18# \x01(\t\x12\x13\n\x0bLoraAdapter\x18$ \x01(\t\x12\x11\n\tNoMulMatQ\x18% \x01(\x08\x12\x12\n\nDraftModel\x18\' \x01(\t\x12\x11\n\tAudioPath\x18& \x01(\t\x12\x14\n\x0cQuantization\x18( \x01(\t\"*\n\x06Result\x12\x0f\n\x07message\x18\x01 \x01(\t\x12\x0f\n\x07success\x18\x02 \x01(\x08\"%\n\x0f\x45mbeddingResult\x12\x12\n\nembeddings\x18\x01 \x03(\x02\"C\n\x11TranscriptRequest\x12\x0b\n\x03\x64st\x18\x02 \x01(\t\x12\x10\n\x08language\x18\x03 \x01(\t\x12\x0f\n\x07threads\x18\x04 \x01(\r\"N\n\x10TranscriptResult\x12,\n\x08segments\x18\x01 \x03(\x0b\x32\x1a.backend.TranscriptSegment\x12\x0c\n\x04text\x18\x02 \x01(\t\"Y\n\x11TranscriptSegment\x12\n\n\x02id\x18\x01 \x01(\x05\x12\r\n\x05start\x18\x02 \x01(\x03\x12\x0b\n\x03\x65nd\x18\x03 \x01(\x03\x12\x0c\n\x04text\x18\x04 \x01(\t\x12\x0e\n\x06tokens\x18\x05 \x03(\x05\"\xd7\x01\n\x14GenerateImageRequest\x12\x0e\n\x06height\x18\x01 \x01(\x05\x12\r\n\x05width\x18\x02 \x01(\x05\x12\x0c\n\x04mode\x18\x03 \x01(\x05\x12\x0c\n\x04step\x18\x04 \x01(\x05\x12\x0c\n\x04seed\x18\x05 \x01(\x05\x12\x17\n\x0fpositive_prompt\x18\x06 \x01(\t\x12\x17\n\x0fnegative_prompt\x18\x07 \x01(\t\x12\x0b\n\x03\x64st\x18\x08 \x01(\t\x12\x0b\n\x03src\x18\t \x01(\t\x12\x18\n\x10\x45nableParameters\x18\n \x01(\t\x12\x10\n\x08\x43LIPSkip\x18\x0b \x01(\x05\"6\n\nTTSRequest\x12\x0c\n\x04text\x18\x01 \x01(\t\x12\r\n\x05model\x18\x02 \x01(\t\x12\x0b\n\x03\x64st\x18\x03 \x01(\t\"6\n\x14TokenizationResponse\x12\x0e\n\x06length\x18\x01 \x01(\x05\x12\x0e\n\x06tokens\x18\x02 \x03(\x05\"\x8e\x01\n\x0fMemoryUsageData\x12\r\n\x05total\x18\x01 \x01(\x04\x12:\n\tbreakdown\x18\x02 \x03(\x0b\x32\'.backend.MemoryUsageData.BreakdownEntry\x1a\x30\n\x0e\x42reakdownEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\x04:\x02\x38\x01\"\xad\x01\n\x0eStatusResponse\x12,\n\x05state\x18\x01 \x01(\x0e\x32\x1d.backend.StatusResponse.State\x12(\n\x06memory\x18\x02 \x01(\x0b\x32\x18.backend.MemoryUsageData\"C\n\x05State\x12\x11\n\rUNINITIALIZED\x10\x00\x12\x08\n\x04\x42USY\x10\x01\x12\t\n\x05READY\x10\x02\x12\x12\n\x05\x45RROR\x10\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x32\xf4\x04\n\x07\x42\x61\x63kend\x12\x32\n\x06Health\x12\x16.backend.HealthMessage\x1a\x0e.backend.Reply\"\x00\x12\x34\n\x07Predict\x12\x17.backend.PredictOptions\x1a\x0e.backend.Reply\"\x00\x12\x35\n\tLoadModel\x12\x15.backend.ModelOptions\x1a\x0f.backend.Result\"\x00\x12<\n\rPredictStream\x12\x17.backend.PredictOptions\x1a\x0e.backend.Reply\"\x00\x30\x01\x12@\n\tEmbedding\x12\x17.backend.PredictOptions\x1a\x18.backend.EmbeddingResult\"\x00\x12\x41\n\rGenerateImage\x12\x1d.backend.GenerateImageRequest\x1a\x0f.backend.Result\"\x00\x12M\n\x12\x41udioTranscription\x12\x1a.backend.TranscriptRequest\x1a\x19.backend.TranscriptResult\"\x00\x12-\n\x03TTS\x12\x13.backend.TTSRequest\x1a\x0f.backend.Result\"\x00\x12J\n\x0eTokenizeString\x12\x17.backend.PredictOptions\x1a\x1d.backend.TokenizationResponse\"\x00\x12;\n\x06Status\x12\x16.backend.HealthMessage\x1a\x17.backend.StatusResponse\"\x00\x42Z\n\x19io.skynet.localai.backendB\x0eLocalAIBackendP\x01Z+github.com/go-skynet/LocalAI/pkg/grpc/protob\x06proto3') + +_globals = globals() +_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) +_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'backend_pb2', _globals) +if _descriptor._USE_C_DESCRIPTORS == False: + + DESCRIPTOR._options = None + DESCRIPTOR._serialized_options = b'\n\031io.skynet.localai.backendB\016LocalAIBackendP\001Z+github.com/go-skynet/LocalAI/pkg/grpc/proto' + _MEMORYUSAGEDATA_BREAKDOWNENTRY._options = None + _MEMORYUSAGEDATA_BREAKDOWNENTRY._serialized_options = b'8\001' + _globals['_HEALTHMESSAGE']._serialized_start=26 + _globals['_HEALTHMESSAGE']._serialized_end=41 + _globals['_PREDICTOPTIONS']._serialized_start=44 + _globals['_PREDICTOPTIONS']._serialized_end=834 + _globals['_REPLY']._serialized_start=836 + _globals['_REPLY']._serialized_end=860 + _globals['_MODELOPTIONS']._serialized_start=863 + _globals['_MODELOPTIONS']._serialized_end=1637 + _globals['_RESULT']._serialized_start=1639 + _globals['_RESULT']._serialized_end=1681 + _globals['_EMBEDDINGRESULT']._serialized_start=1683 + _globals['_EMBEDDINGRESULT']._serialized_end=1720 + _globals['_TRANSCRIPTREQUEST']._serialized_start=1722 + _globals['_TRANSCRIPTREQUEST']._serialized_end=1789 + _globals['_TRANSCRIPTRESULT']._serialized_start=1791 + _globals['_TRANSCRIPTRESULT']._serialized_end=1869 + _globals['_TRANSCRIPTSEGMENT']._serialized_start=1871 + _globals['_TRANSCRIPTSEGMENT']._serialized_end=1960 + _globals['_GENERATEIMAGEREQUEST']._serialized_start=1963 + _globals['_GENERATEIMAGEREQUEST']._serialized_end=2178 + _globals['_TTSREQUEST']._serialized_start=2180 + _globals['_TTSREQUEST']._serialized_end=2234 + _globals['_TOKENIZATIONRESPONSE']._serialized_start=2236 + _globals['_TOKENIZATIONRESPONSE']._serialized_end=2290 + _globals['_MEMORYUSAGEDATA']._serialized_start=2293 + _globals['_MEMORYUSAGEDATA']._serialized_end=2435 + _globals['_MEMORYUSAGEDATA_BREAKDOWNENTRY']._serialized_start=2387 + _globals['_MEMORYUSAGEDATA_BREAKDOWNENTRY']._serialized_end=2435 + _globals['_STATUSRESPONSE']._serialized_start=2438 + _globals['_STATUSRESPONSE']._serialized_end=2611 + _globals['_STATUSRESPONSE_STATE']._serialized_start=2544 + _globals['_STATUSRESPONSE_STATE']._serialized_end=2611 + _globals['_BACKEND']._serialized_start=2614 + _globals['_BACKEND']._serialized_end=3242 +# @@protoc_insertion_point(module_scope) diff --git a/extra/grpc/sam/backend_pb2_grpc.py b/extra/grpc/sam/backend_pb2_grpc.py new file mode 100644 index 000000000000..79a7677fb27f --- /dev/null +++ b/extra/grpc/sam/backend_pb2_grpc.py @@ -0,0 +1,363 @@ +# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! +"""Client and server classes corresponding to protobuf-defined services.""" +import grpc + +import backend_pb2 as backend__pb2 + + +class BackendStub(object): + """Missing associated documentation comment in .proto file.""" + + def __init__(self, channel): + """Constructor. + + Args: + channel: A grpc.Channel. + """ + self.Health = channel.unary_unary( + '/backend.Backend/Health', + request_serializer=backend__pb2.HealthMessage.SerializeToString, + response_deserializer=backend__pb2.Reply.FromString, + ) + self.Predict = channel.unary_unary( + '/backend.Backend/Predict', + request_serializer=backend__pb2.PredictOptions.SerializeToString, + response_deserializer=backend__pb2.Reply.FromString, + ) + self.LoadModel = channel.unary_unary( + '/backend.Backend/LoadModel', + request_serializer=backend__pb2.ModelOptions.SerializeToString, + response_deserializer=backend__pb2.Result.FromString, + ) + self.PredictStream = channel.unary_stream( + '/backend.Backend/PredictStream', + request_serializer=backend__pb2.PredictOptions.SerializeToString, + response_deserializer=backend__pb2.Reply.FromString, + ) + self.Embedding = channel.unary_unary( + '/backend.Backend/Embedding', + request_serializer=backend__pb2.PredictOptions.SerializeToString, + response_deserializer=backend__pb2.EmbeddingResult.FromString, + ) + self.GenerateImage = channel.unary_unary( + '/backend.Backend/GenerateImage', + request_serializer=backend__pb2.GenerateImageRequest.SerializeToString, + response_deserializer=backend__pb2.Result.FromString, + ) + self.AudioTranscription = channel.unary_unary( + '/backend.Backend/AudioTranscription', + request_serializer=backend__pb2.TranscriptRequest.SerializeToString, + response_deserializer=backend__pb2.TranscriptResult.FromString, + ) + self.TTS = channel.unary_unary( + '/backend.Backend/TTS', + request_serializer=backend__pb2.TTSRequest.SerializeToString, + response_deserializer=backend__pb2.Result.FromString, + ) + self.TokenizeString = channel.unary_unary( + '/backend.Backend/TokenizeString', + request_serializer=backend__pb2.PredictOptions.SerializeToString, + response_deserializer=backend__pb2.TokenizationResponse.FromString, + ) + self.Status = channel.unary_unary( + '/backend.Backend/Status', + request_serializer=backend__pb2.HealthMessage.SerializeToString, + response_deserializer=backend__pb2.StatusResponse.FromString, + ) + + +class BackendServicer(object): + """Missing associated documentation comment in .proto file.""" + + def Health(self, request, context): + """Missing associated documentation comment in .proto file.""" + context.set_code(grpc.StatusCode.UNIMPLEMENTED) + context.set_details('Method not implemented!') + raise NotImplementedError('Method not implemented!') + + def Predict(self, request, context): + """Missing associated documentation comment in .proto file.""" + context.set_code(grpc.StatusCode.UNIMPLEMENTED) + context.set_details('Method not implemented!') + raise NotImplementedError('Method not implemented!') + + def LoadModel(self, request, context): + """Missing associated documentation comment in .proto file.""" + context.set_code(grpc.StatusCode.UNIMPLEMENTED) + context.set_details('Method not implemented!') + raise NotImplementedError('Method not implemented!') + + def PredictStream(self, request, context): + """Missing associated documentation comment in .proto file.""" + context.set_code(grpc.StatusCode.UNIMPLEMENTED) + context.set_details('Method not implemented!') + raise NotImplementedError('Method not implemented!') + + def Embedding(self, request, context): + """Missing associated documentation comment in .proto file.""" + context.set_code(grpc.StatusCode.UNIMPLEMENTED) + context.set_details('Method not implemented!') + raise NotImplementedError('Method not implemented!') + + def GenerateImage(self, request, context): + """Missing associated documentation comment in .proto file.""" + context.set_code(grpc.StatusCode.UNIMPLEMENTED) + context.set_details('Method not implemented!') + raise NotImplementedError('Method not implemented!') + + def AudioTranscription(self, request, context): + """Missing associated documentation comment in .proto file.""" + context.set_code(grpc.StatusCode.UNIMPLEMENTED) + context.set_details('Method not implemented!') + raise NotImplementedError('Method not implemented!') + + def TTS(self, request, context): + """Missing associated documentation comment in .proto file.""" + context.set_code(grpc.StatusCode.UNIMPLEMENTED) + context.set_details('Method not implemented!') + raise NotImplementedError('Method not implemented!') + + def TokenizeString(self, request, context): + """Missing associated documentation comment in .proto file.""" + context.set_code(grpc.StatusCode.UNIMPLEMENTED) + context.set_details('Method not implemented!') + raise NotImplementedError('Method not implemented!') + + def Status(self, request, context): + """Missing associated documentation comment in .proto file.""" + context.set_code(grpc.StatusCode.UNIMPLEMENTED) + context.set_details('Method not implemented!') + raise NotImplementedError('Method not implemented!') + + +def add_BackendServicer_to_server(servicer, server): + rpc_method_handlers = { + 'Health': grpc.unary_unary_rpc_method_handler( + servicer.Health, + request_deserializer=backend__pb2.HealthMessage.FromString, + response_serializer=backend__pb2.Reply.SerializeToString, + ), + 'Predict': grpc.unary_unary_rpc_method_handler( + servicer.Predict, + request_deserializer=backend__pb2.PredictOptions.FromString, + response_serializer=backend__pb2.Reply.SerializeToString, + ), + 'LoadModel': grpc.unary_unary_rpc_method_handler( + servicer.LoadModel, + request_deserializer=backend__pb2.ModelOptions.FromString, + response_serializer=backend__pb2.Result.SerializeToString, + ), + 'PredictStream': grpc.unary_stream_rpc_method_handler( + servicer.PredictStream, + request_deserializer=backend__pb2.PredictOptions.FromString, + response_serializer=backend__pb2.Reply.SerializeToString, + ), + 'Embedding': grpc.unary_unary_rpc_method_handler( + servicer.Embedding, + request_deserializer=backend__pb2.PredictOptions.FromString, + response_serializer=backend__pb2.EmbeddingResult.SerializeToString, + ), + 'GenerateImage': grpc.unary_unary_rpc_method_handler( + servicer.GenerateImage, + request_deserializer=backend__pb2.GenerateImageRequest.FromString, + response_serializer=backend__pb2.Result.SerializeToString, + ), + 'AudioTranscription': grpc.unary_unary_rpc_method_handler( + servicer.AudioTranscription, + request_deserializer=backend__pb2.TranscriptRequest.FromString, + response_serializer=backend__pb2.TranscriptResult.SerializeToString, + ), + 'TTS': grpc.unary_unary_rpc_method_handler( + servicer.TTS, + request_deserializer=backend__pb2.TTSRequest.FromString, + response_serializer=backend__pb2.Result.SerializeToString, + ), + 'TokenizeString': grpc.unary_unary_rpc_method_handler( + servicer.TokenizeString, + request_deserializer=backend__pb2.PredictOptions.FromString, + response_serializer=backend__pb2.TokenizationResponse.SerializeToString, + ), + 'Status': grpc.unary_unary_rpc_method_handler( + servicer.Status, + request_deserializer=backend__pb2.HealthMessage.FromString, + response_serializer=backend__pb2.StatusResponse.SerializeToString, + ), + } + generic_handler = grpc.method_handlers_generic_handler( + 'backend.Backend', rpc_method_handlers) + server.add_generic_rpc_handlers((generic_handler,)) + + + # This class is part of an EXPERIMENTAL API. +class Backend(object): + """Missing associated documentation comment in .proto file.""" + + @staticmethod + def Health(request, + target, + options=(), + channel_credentials=None, + call_credentials=None, + insecure=False, + compression=None, + wait_for_ready=None, + timeout=None, + metadata=None): + return grpc.experimental.unary_unary(request, target, '/backend.Backend/Health', + backend__pb2.HealthMessage.SerializeToString, + backend__pb2.Reply.FromString, + options, channel_credentials, + insecure, call_credentials, compression, wait_for_ready, timeout, metadata) + + @staticmethod + def Predict(request, + target, + options=(), + channel_credentials=None, + call_credentials=None, + insecure=False, + compression=None, + wait_for_ready=None, + timeout=None, + metadata=None): + return grpc.experimental.unary_unary(request, target, '/backend.Backend/Predict', + backend__pb2.PredictOptions.SerializeToString, + backend__pb2.Reply.FromString, + options, channel_credentials, + insecure, call_credentials, compression, wait_for_ready, timeout, metadata) + + @staticmethod + def LoadModel(request, + target, + options=(), + channel_credentials=None, + call_credentials=None, + insecure=False, + compression=None, + wait_for_ready=None, + timeout=None, + metadata=None): + return grpc.experimental.unary_unary(request, target, '/backend.Backend/LoadModel', + backend__pb2.ModelOptions.SerializeToString, + backend__pb2.Result.FromString, + options, channel_credentials, + insecure, call_credentials, compression, wait_for_ready, timeout, metadata) + + @staticmethod + def PredictStream(request, + target, + options=(), + channel_credentials=None, + call_credentials=None, + insecure=False, + compression=None, + wait_for_ready=None, + timeout=None, + metadata=None): + return grpc.experimental.unary_stream(request, target, '/backend.Backend/PredictStream', + backend__pb2.PredictOptions.SerializeToString, + backend__pb2.Reply.FromString, + options, channel_credentials, + insecure, call_credentials, compression, wait_for_ready, timeout, metadata) + + @staticmethod + def Embedding(request, + target, + options=(), + channel_credentials=None, + call_credentials=None, + insecure=False, + compression=None, + wait_for_ready=None, + timeout=None, + metadata=None): + return grpc.experimental.unary_unary(request, target, '/backend.Backend/Embedding', + backend__pb2.PredictOptions.SerializeToString, + backend__pb2.EmbeddingResult.FromString, + options, channel_credentials, + insecure, call_credentials, compression, wait_for_ready, timeout, metadata) + + @staticmethod + def GenerateImage(request, + target, + options=(), + channel_credentials=None, + call_credentials=None, + insecure=False, + compression=None, + wait_for_ready=None, + timeout=None, + metadata=None): + return grpc.experimental.unary_unary(request, target, '/backend.Backend/GenerateImage', + backend__pb2.GenerateImageRequest.SerializeToString, + backend__pb2.Result.FromString, + options, channel_credentials, + insecure, call_credentials, compression, wait_for_ready, timeout, metadata) + + @staticmethod + def AudioTranscription(request, + target, + options=(), + channel_credentials=None, + call_credentials=None, + insecure=False, + compression=None, + wait_for_ready=None, + timeout=None, + metadata=None): + return grpc.experimental.unary_unary(request, target, '/backend.Backend/AudioTranscription', + backend__pb2.TranscriptRequest.SerializeToString, + backend__pb2.TranscriptResult.FromString, + options, channel_credentials, + insecure, call_credentials, compression, wait_for_ready, timeout, metadata) + + @staticmethod + def TTS(request, + target, + options=(), + channel_credentials=None, + call_credentials=None, + insecure=False, + compression=None, + wait_for_ready=None, + timeout=None, + metadata=None): + return grpc.experimental.unary_unary(request, target, '/backend.Backend/TTS', + backend__pb2.TTSRequest.SerializeToString, + backend__pb2.Result.FromString, + options, channel_credentials, + insecure, call_credentials, compression, wait_for_ready, timeout, metadata) + + @staticmethod + def TokenizeString(request, + target, + options=(), + channel_credentials=None, + call_credentials=None, + insecure=False, + compression=None, + wait_for_ready=None, + timeout=None, + metadata=None): + return grpc.experimental.unary_unary(request, target, '/backend.Backend/TokenizeString', + backend__pb2.PredictOptions.SerializeToString, + backend__pb2.TokenizationResponse.FromString, + options, channel_credentials, + insecure, call_credentials, compression, wait_for_ready, timeout, metadata) + + @staticmethod + def Status(request, + target, + options=(), + channel_credentials=None, + call_credentials=None, + insecure=False, + compression=None, + wait_for_ready=None, + timeout=None, + metadata=None): + return grpc.experimental.unary_unary(request, target, '/backend.Backend/Status', + backend__pb2.HealthMessage.SerializeToString, + backend__pb2.StatusResponse.FromString, + options, channel_credentials, + insecure, call_credentials, compression, wait_for_ready, timeout, metadata) diff --git a/extra/grpc/sam/run.sh b/extra/grpc/sam/run.sh new file mode 100755 index 000000000000..56839bbf26a6 --- /dev/null +++ b/extra/grpc/sam/run.sh @@ -0,0 +1,13 @@ +#!/bin/bash + +## +## A bash script wrapper that runs the sam server with conda +export PATH=$PATH:/opt/conda/bin + +# Activate conda environment +source activate sam + +# get the directory where the bash script is located +DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )" + +python $DIR/sam.py $@ \ No newline at end of file diff --git a/extra/grpc/sam/sam.py b/extra/grpc/sam/sam.py new file mode 100644 index 000000000000..b9d90b84c845 --- /dev/null +++ b/extra/grpc/sam/sam.py @@ -0,0 +1,214 @@ +#! /usr/bin/env python3 +from __future__ import annotations + +from concurrent import futures +import argparse +import os +import signal +import sys +import os +import time + +import backend_pb2 +import backend_pb2_grpc + +import grpc + +import torch +from functools import partial +from segment_anything_hq import SamAutomaticMaskGenerator +from segment_anything_hq.modeling import ImageEncoderViT, MaskDecoderHQ, PromptEncoder, Sam, TwoWayTransformer +import matplotlib.pyplot as plt +import numpy as np + + +_ONE_DAY_IN_SECONDS = 60 * 60 * 24 +PROMT_EMBED_DIM=256 +IMAGE_SIZE = 1024 +VIT_PATCH_SIZE=16 + +# Enum for sam model type +class SamModelType: + default = "sam_hq_vit_h.pth" + vit_h = "sam_hq_vit_h.pth" + vit_l = "sam_hq_vit_l.pth" + vit_b = "sam_hq_vit_b.pth" + vit_tiny = "sam_hq_vit_tiny.pth" + + +# If MAX_WORKERS are specified in the environment use it, otherwise default to 1 +MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1')) + + +# Implement the BackendServicer class with the service methods +class BackendServicer(backend_pb2_grpc.BackendServicer): + """ + A gRPC servicer for the backend service. + """ + + def Health(self, request, context): + return backend_pb2.Reply(message=bytes("OK", "utf-8")) + + def LoadModel(self, request, context): + try: + model_name = request.model_name + if model_name not in SamModelType.__dict__.keys(): + raise Exception(f"Model name {model_name} not found in {SamModelType.__dict__.keys()}") + model_path = request.model_path + # check the model_path is valid + if not os.path.exists(model_path): + raise Exception(f"Model path {model_path} does not exist") + + match model_name: + case SamModelType.default: + sam = _build_sam_vit_h(checkpoint=model_path) + case SamModelType.vit_h: + sam = _build_sam_vit_h(checkpoint=model_path) + case SamModelType.vit_l: + sam = _build_sam_vit_l(checkpoint=model_path) + case SamModelType.vit_b: + sam = _build_sam_vit_b(checkpoint=model_path) + case SamModelType.vit_tiny: + # TODO: Implement this + pass + case _: + raise Exception(f"Model name {model_name} not found in {SamModelType.__dict__.keys()}") + # TODO No sure if this is the right way to do it + self.model=sam + + except Exception as err: + return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") + return backend_pb2.Result(success=True, message="Model loaded successfully") + + def GenerateImage(self, request, context): + try: + mask_generator=SamAutomaticMaskGenerator( + model=self.model, + points_per_side=32, + pred_iou_thresh=0.8, + stability_score_thresh=0.9, + crop_n_layers=1, + crop_n_points_downscale_factor=2, + min_mask_region_area=100 + ) + + masks=mask_generator.generate_mask(request.image) + masks_to_image(masks, request) + except Exception as err: + return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") + return backend_pb2.Result(success=True, message="Image generated successfully") + + def PredictStream(self, request, context): + return super().PredictStream(request, context) + +def _constrcut_sam(encoder_embed_dim,encoder_depth,encoder_num_heads,encoder_global_attn_indexes,checkpoint=None): + image_embedding_size = IMAGE_SIZE // VIT_PATCH_SIZE + sam = Sam( + image_encoder=ImageEncoderViT( + depth=encoder_depth, + embed_dim=encoder_embed_dim, + img_size=IMAGE_SIZE, + mlp_ratio=4, + norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), + num_heads=encoder_num_heads, + patch_size=VIT_PATCH_SIZE, + qkv_bias=True, + use_rel_pos=True, + global_attn_indexes=encoder_global_attn_indexes, + window_size=14, + out_chans=PROMT_EMBED_DIM, + ), + prompt_encoder=PromptEncoder( + embed_dim=PROMT_EMBED_DIM, + image_embedding_size=(image_embedding_size, image_embedding_size), + input_image_size=(IMAGE_SIZE, IMAGE_SIZE), + mask_in_chans=16, + ), + mask_decoder=MaskDecoderHQ( + num_multimask_outputs=3, + transformer=TwoWayTransformer( + depth=2, + embedding_dim=PROMT_EMBED_DIM, + mlp_dim=2048, + num_heads=8, + ), + transformer_dim=PROMT_EMBED_DIM, + iou_head_depth=3, + iou_head_hidden_dim=256, + vit_dim=encoder_embed_dim, + ), + pixel_mean=[123.675, 116.28, 103.53], + pixel_std=[58.395, 57.12, 57.375], + ) + + sam.eval() + if checkpoint is not None: + with open(checkpoint, "rb") as f: + device = "cuda" if torch.cuda.is_available() else "cpu" + state_dict = torch.load(f, map_location=device) + info = sam.load_state_dict(state_dict, strict=False) + print(info) + for n, p in sam.named_parameters(): + if 'hf_token' not in n and 'hf_mlp' not in n and 'compress_vit_feat' not in n and 'embedding_encoder' not in n and 'embedding_maskfeature' not in n: + p.requires_grad = False + + return sam + +def _build_sam_vit_h(checkpoint=None): + return _constrcut_sam(encoder_embed_dim=1280,encoder_depth=32,encoder_num_heads=16,encoder_global_attn_indexes=[7,15,23,31],checkpoint=checkpoint) + +def _build_sam_vit_l(checkpoint=None): + return _constrcut_sam(encoder_embed_dim=1024,encoder_depth=24,encoder_num_heads=16,encoder_global_attn_indexes=[5,11,17,23],checkpoint=checkpoint) + +def _build_sam_vit_b(checkpoint=None): + return _constrcut_sam(encoder_embed_dim=768,encoder_depth=12,encoder_num_heads=12,encoder_global_attn_indexes=[2,5,8,11],checkpoint=checkpoint) + +def masks_to_image(anns, request): + if len(anns)==0: + return + sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True) + ax = plt.gca() + ax.set_autoscale_on(False) + + img = np.ones((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1], 4)) + img[:,:,3] = 0 + for ann in sorted_anns: + m = ann['segmentation'] + color_mask = np.concatenate([np.random.random(3), [0.35]]) + img[m] = color_mask + ax.imshow(img) + plt.axis('off') + plt.imsave(request.dst, img) + + +def serve(address): + server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS)) + backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server) + server.add_insecure_port(address) + server.start() + print("Server started. Listening on: " + address, file=sys.stderr) + + # Define the signal handler function + def signal_handler(sig, frame): + print("Received termination signal. Shutting down...") + server.stop(0) + sys.exit(0) + + # Set the signal handlers for SIGINT and SIGTERM + signal.signal(signal.SIGINT, signal_handler) + signal.signal(signal.SIGTERM, signal_handler) + + try: + while True: + time.sleep(_ONE_DAY_IN_SECONDS) + except KeyboardInterrupt: + server.stop(0) + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description="Run the gRPC server.") + parser.add_argument( + "--addr", default="localhost:50051", help="The address to bind the server to." + ) + args = parser.parse_args() + + serve(args.addr) \ No newline at end of file diff --git a/extra/grpc/sam/sam.yml b/extra/grpc/sam/sam.yml new file mode 100644 index 000000000000..42717a0a962f --- /dev/null +++ b/extra/grpc/sam/sam.yml @@ -0,0 +1,61 @@ +name: sam +channels: + - defaults +dependencies: + - _libgcc_mutex=0.1=main + - _openmp_mutex=5.1=1_gnu + - bzip2=1.0.8=h7b6447c_0 + - ca-certificates=2023.08.22=h06a4308_0 + - ld_impl_linux-64=2.38=h1181459_1 + - libffi=3.4.4=h6a678d5_0 + - libgcc-ng=11.2.0=h1234567_1 + - libgomp=11.2.0=h1234567_1 + - libstdcxx-ng=11.2.0=h1234567_1 + - libuuid=1.41.5=h5eee18b_0 + - ncurses=6.4=h6a678d5_0 + - openssl=3.0.12=h7f8727e_0 + - pip=23.3=py311h06a4308_0 + - python=3.11.5=h955ad1f_0 + - readline=8.2=h5eee18b_0 + - setuptools=68.0.0=py311h06a4308_0 + - sqlite=3.41.2=h5eee18b_0 + - tk=8.6.12=h1ccaba5_0 + - tzdata=2023c=h04d1e81_0 + - wheel=0.41.2=py311h06a4308_0 + - xz=5.4.2=h5eee18b_0 + - zlib=1.2.13=h5eee18b_0 + - pip: + - certifi==2023.7.22 + - charset-normalizer==3.3.2 + - filelock==3.13.1 + - fsspec==2023.10.0 + - grpcio==1.59.2 + - idna==3.4 + - jinja2==3.1.2 + - markupsafe==2.1.3 + - mpmath==1.3.0 + - networkx==3.2.1 + - numpy==1.26.1 + - nvidia-cublas-cu12==12.1.3.1 + - nvidia-cuda-cupti-cu12==12.1.105 + - nvidia-cuda-nvrtc-cu12==12.1.105 + - nvidia-cuda-runtime-cu12==12.1.105 + - nvidia-cudnn-cu12==8.9.2.26 + - nvidia-cufft-cu12==11.0.2.54 + - nvidia-curand-cu12==10.3.2.106 + - nvidia-cusolver-cu12==11.4.5.107 + - nvidia-cusparse-cu12==12.1.0.106 + - nvidia-nccl-cu12==2.18.1 + - nvidia-nvjitlink-cu12==12.3.52 + - nvidia-nvtx-cu12==12.1.105 + - pillow==10.1.0 + - protobuf==4.25.0 + - requests==2.31.0 + - segment-anything-hq==0.3 + - sympy==1.12 + - torch==2.1.0 + - torchvision==0.16.0 + - triton==2.1.0 + - typing-extensions==4.8.0 + - urllib3==2.0.7 +prefix: /opt/conda/envs/sam diff --git a/extra/requirements.txt b/extra/requirements.txt deleted file mode 100644 index fb3cc0122a9b..000000000000 --- a/extra/requirements.txt +++ /dev/null @@ -1,7 +0,0 @@ -sentence_transformers -grpcio -google -protobuf -six -omegaconf -compel \ No newline at end of file From ca735e7ffc211e7c77242b9046a520c912cd6174 Mon Sep 17 00:00:00 2001 From: Aisuko Date: Mon, 6 Nov 2023 23:58:38 +0000 Subject: [PATCH 2/3] Add implement of tiny and update env Signed-off-by: GitHub --- extra/grpc/sam/sam.py | 58 +++++++++++++++++++++++++++++++++++++++--- extra/grpc/sam/sam.yml | 14 ++++++++++ 2 files changed, 68 insertions(+), 4 deletions(-) diff --git a/extra/grpc/sam/sam.py b/extra/grpc/sam/sam.py index b9d90b84c845..f413b6db2be1 100644 --- a/extra/grpc/sam/sam.py +++ b/extra/grpc/sam/sam.py @@ -17,7 +17,7 @@ import torch from functools import partial from segment_anything_hq import SamAutomaticMaskGenerator -from segment_anything_hq.modeling import ImageEncoderViT, MaskDecoderHQ, PromptEncoder, Sam, TwoWayTransformer +from segment_anything_hq.modeling import ImageEncoderViT, MaskDecoderHQ, PromptEncoder, Sam, TwoWayTransformer, TinyViT import matplotlib.pyplot as plt import numpy as np @@ -54,8 +54,8 @@ def LoadModel(self, request, context): model_name = request.model_name if model_name not in SamModelType.__dict__.keys(): raise Exception(f"Model name {model_name} not found in {SamModelType.__dict__.keys()}") + model_path = request.model_path - # check the model_path is valid if not os.path.exists(model_path): raise Exception(f"Model path {model_path} does not exist") @@ -69,8 +69,7 @@ def LoadModel(self, request, context): case SamModelType.vit_b: sam = _build_sam_vit_b(checkpoint=model_path) case SamModelType.vit_tiny: - # TODO: Implement this - pass + sam = _build_sam_vit_tiny(checkpoint=model_path) case _: raise Exception(f"Model name {model_name} not found in {SamModelType.__dict__.keys()}") # TODO No sure if this is the right way to do it @@ -163,6 +162,57 @@ def _build_sam_vit_l(checkpoint=None): def _build_sam_vit_b(checkpoint=None): return _constrcut_sam(encoder_embed_dim=768,encoder_depth=12,encoder_num_heads=12,encoder_global_attn_indexes=[2,5,8,11],checkpoint=checkpoint) +def _build_sam_vit_tiny(checkpoint=None): + image_embedding_size = IMAGE_SIZE // VIT_PATCH_SIZE + mobile_sam = Sam( + image_encoder=TinyViT(img_size=1024, in_chans=3, num_classes=1000, + embed_dims=[64, 128, 160, 320], + depths=[2, 2, 6, 2], + num_heads=[2, 4, 5, 10], + window_sizes=[7, 7, 14, 7], + mlp_ratio=4., + drop_rate=0., + drop_path_rate=0.0, + use_checkpoint=False, + mbconv_expand_ratio=4.0, + local_conv_size=3, + layer_lr_decay=0.8 + ), + prompt_encoder=PromptEncoder( + embed_dim=PROMT_EMBED_DIM, + image_embedding_size=(image_embedding_size, image_embedding_size), + input_image_size=(IMAGE_SIZE, IMAGE_SIZE), + mask_in_chans=16, + ), + mask_decoder=MaskDecoderHQ( + num_multimask_outputs=3, + transformer=TwoWayTransformer( + depth=2, + embedding_dim=PROMT_EMBED_DIM, + mlp_dim=2048, + num_heads=8, + ), + transformer_dim=PROMT_EMBED_DIM, + iou_head_depth=3, + iou_head_hidden_dim=256, + vit_dim=160, + ), + pixel_mean=[123.675, 116.28, 103.53], + pixel_std=[58.395, 57.12, 57.375], + ) + + mobile_sam.eval() + if checkpoint is not None: + with open(checkpoint, "rb") as f: + device = "cuda" if torch.cuda.is_available() else "cpu" + state_dict = torch.load(f, map_location=device) + info = mobile_sam.load_state_dict(state_dict, strict=False) + print(info) + for n, p in mobile_sam.named_parameters(): + if 'hf_token' not in n and 'hf_mlp' not in n and 'compress_vit_feat' not in n and 'embedding_encoder' not in n and 'embedding_maskfeature' not in n: + p.requires_grad = False + return mobile_sam + def masks_to_image(anns, request): if len(anns)==0: return diff --git a/extra/grpc/sam/sam.yml b/extra/grpc/sam/sam.yml index 42717a0a962f..1529b1e560dd 100644 --- a/extra/grpc/sam/sam.yml +++ b/extra/grpc/sam/sam.yml @@ -27,12 +27,18 @@ dependencies: - pip: - certifi==2023.7.22 - charset-normalizer==3.3.2 + - contourpy==1.2.0 + - cycler==0.12.1 - filelock==3.13.1 + - fonttools==4.44.0 - fsspec==2023.10.0 - grpcio==1.59.2 + - huggingface-hub==0.18.0 - idna==3.4 - jinja2==3.1.2 + - kiwisolver==1.4.5 - markupsafe==2.1.3 + - matplotlib==3.8.1 - mpmath==1.3.0 - networkx==3.2.1 - numpy==1.26.1 @@ -48,13 +54,21 @@ dependencies: - nvidia-nccl-cu12==2.18.1 - nvidia-nvjitlink-cu12==12.3.52 - nvidia-nvtx-cu12==12.1.105 + - packaging==23.2 - pillow==10.1.0 - protobuf==4.25.0 + - pyparsing==3.1.1 + - python-dateutil==2.8.2 + - pyyaml==6.0.1 - requests==2.31.0 + - safetensors==0.4.0 - segment-anything-hq==0.3 + - six==1.16.0 - sympy==1.12 + - timm==0.9.10 - torch==2.1.0 - torchvision==0.16.0 + - tqdm==4.66.1 - triton==2.1.0 - typing-extensions==4.8.0 - urllib3==2.0.7 From 63bd7a5674ef3ed863282a0993fafb285d40bc92 Mon Sep 17 00:00:00 2001 From: Aisuko Date: Thu, 9 Nov 2023 00:54:25 +0000 Subject: [PATCH 3/3] remove annotations and add Enum Signed-off-by: GitHub --- extra/grpc/sam/sam.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/extra/grpc/sam/sam.py b/extra/grpc/sam/sam.py index f413b6db2be1..1afa9e92aa0c 100644 --- a/extra/grpc/sam/sam.py +++ b/extra/grpc/sam/sam.py @@ -1,8 +1,8 @@ #! /usr/bin/env python3 -from __future__ import annotations from concurrent import futures import argparse +from enum import Enum import os import signal import sys @@ -28,7 +28,7 @@ VIT_PATCH_SIZE=16 # Enum for sam model type -class SamModelType: +class SamModelType(str, Enum): default = "sam_hq_vit_h.pth" vit_h = "sam_hq_vit_h.pth" vit_l = "sam_hq_vit_l.pth"