-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexport.py
245 lines (198 loc) · 9.86 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
"""Export a YOLOv5 *.pt model to ONNX formats
Modified version of export.py from yolov5 repository/ commit 63dd65e7edd96debbefa81e22f3d5cfb07dd2ba4
ADDED:
- Function export_tf() to convert ONNX to TF representation using onnx_tf
- Function export_tflite() to convert TF representation to TFLite using TF converter
- Function export_openvino() to convert ONNX to OpenVINO IR representaion in docker (Docker must be installed!)
Usage:
$ python export_models.py --weights models/yolov5s.pt --img 640 --batch 1
"""
import argparse
import sys
import time
from pathlib import Path
import torch
import torch.nn as nn
from torch.utils.mobile_optimizer import optimize_for_mobile
sys.path.insert(0, './yolov5')
FILE = Path(__file__).absolute()
sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
from models.common import Conv
from models.yolo import Detect
from models.experimental import attempt_load
from utils.activations import Hardswish, SiLU
from utils.general import colorstr, check_img_size, set_logging, check_requirements#, file_size -> no such function in v5.0
from utils.torch_utils import select_device
def file_size(file):
'''
Function from utils.general import file size
It is not present in the stable release v5.0
'''
# Return file size in MB
return Path(file).stat().st_size / 1e6
def export_onnx(model, img, file, opset, train, dynamic, simplify):
# ONNX model export
prefix = colorstr('ONNX:')
try:
check_requirements(('onnx', 'onnx-simplifier'))
import onnx
print(f'\n{prefix} starting export with onnx {onnx.__version__}...')
f = file.with_suffix('.onnx')
torch.onnx.export(model, img, f, verbose=False, opset_version=opset,
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
do_constant_folding=not train,
input_names=['images'],
output_names=['output'],
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640)
'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
} if dynamic else None)
# Checks
model_onnx = onnx.load(f) # load onnx model
onnx.checker.check_model(model_onnx) # check onnx model
# Simplify
if simplify:
try:
import onnxsim
print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
model_onnx, check = onnxsim.simplify(
model_onnx,
dynamic_input_shape=dynamic,
input_shapes={'images': list(img.shape)} if dynamic else None)
assert check, 'assert check failed'
onnx.save(model_onnx, f)
except Exception as e:
print(f'{prefix} simplifier failure: {e}')
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
except Exception as e:
print(f'{prefix} export failure: {e}')
def export_tf(file):
'''
Convert model from ONNX to TensoFlow representation (.pb) using onnx_tf
'''
import onnx
import onnx_tf
f = file.with_suffix('.onnx')
model_onnx = onnx.load(f)
prefix = colorstr('ONNX_TF:')
print(f'\n{prefix} starting export with onnx_tf {onnx_tf.__version__}...')
try:
tf_rep = onnx_tf.backend.prepare(model_onnx, strict=False) # prepare tf representation
tf_rep.export_graph('models') # export the model graph
print(f'{prefix} export success, saved as {f}')
except Exception as e:
print(f'{prefix} export failure: {e}')
def export_tflite(file):
'''
Convert model from TensoFlow representation (.pb) to TensorFlow Lite (.tflite)
'''
import tensorflow as tf
f = file.with_suffix('.tflite')
prefix = colorstr('TensorFlow:')
print(f'\n{prefix} starting export with TensorFlow {tf.__version__}...')
try:
# Convert the model
converter = tf.lite.TFLiteConverter.from_saved_model('models')
# TFLite builtin operator library only supports a limited number of TF operators
converter.target_spec.supported_ops = [
tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.
tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops.
]
tflite_model = converter.convert()
open(f, "wb").write(tflite_model)
except Exception as e:
print(f'{prefix} export failure: {e}')
def export_openvino(file):
'''
Convert model from ONNX to OpenVINO representation using docker
'''
import subprocess
f = file.with_suffix('.onnx')
prefix = colorstr('ONNX_VINO:')
docker_command = 'docker run --rm -v $PWD/models:/home/openvino/models --user "$(id -u):$(id -g)" -w /home/openvino openvino/ubuntu20_dev:latest ' + '/bin/bash -c "python3 /opt/intel/openvino/deployment_tools/model_optimizer/mo.py --progress --input_shape [1,3,320,320] --input_model models/yolov5s.onnx --output_dir models/yolov5_openvino --data_type half"'
print(f'\n{prefix} starting export with openvino...')
try:
with open("docker.log", "a") as output:
subprocess.call(docker_command, shell=True, stdout=output, stderr=output)
print(f'{prefix} export success, saved as {f}')
except Exception as e:
print(f'{prefix} export failure: {e}')
def run(weights='./yolov5s.pt', # weights path
img_size=(640, 640), # image (height, width)
batch_size=1, # batch size
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
include=('onnx','tf','tflite','openvino'), # include formats
half=False, # FP16 half-precision export
inplace=False, # set YOLOv5 Detect() inplace=True
train=False, # model.train() mode
optimize=False, # TorchScript: optimize for mobile
dynamic=False, # ONNX: dynamic axes
simplify=False, # ONNX: simplify model
opset=12, # ONNX: opset version
):
t = time.time()
include = [x.lower() for x in include]
img_size *= 2 if len(img_size) == 1 else 1 # expand
file = Path(weights)
# Load PyTorch model
device = select_device(device)
assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
model = attempt_load(weights, map_location=device) # load FP32 model
names = model.names
# Input
gs = int(max(model.stride)) # grid size (max stride)
img_size = [check_img_size(x, gs) for x in img_size] # verify img_size are gs-multiples
img = torch.zeros(batch_size, 3, *img_size).to(device) # image size(1,3,320,192) iDetection
# Update model
if half:
img, model = img.half(), model.half() # to FP16
model.train() if train else model.eval() # training mode = no Detect() layer grid construction
for k, m in model.named_modules():
if isinstance(m, Conv): # assign export-friendly activations
if isinstance(m.act, nn.Hardswish):
m.act = Hardswish()
elif isinstance(m.act, nn.SiLU):
m.act = SiLU()
elif isinstance(m, Detect):
m.inplace = inplace
m.onnx_dynamic = dynamic
# m.forward = m.forward_export # assign forward (optional)
for _ in range(2):
y = model(img) # dry runs
print(f"\n{colorstr('PyTorch:')} starting from {weights} ({file_size(weights):.1f} MB)")
## TODO: need to be more clear. ONNX must be run first to convert to TensorFlow
#if 'tf' in include and 'onnx' not in include:
# include.append('onnx')
# Exports
if 'onnx' in include:
export_onnx(model, img, file, opset, train, dynamic, simplify)
if 'tf' in include:
export_tf(file)
if 'tflite' in include:
export_tflite(file)
if 'openvino' in include:
export_openvino(file)
# Finish
print(f'\nExport complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.')
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='models/yolov5s.pt', help='weights path')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image (height, width)')
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--include', nargs='+', default=['onnx', 'tf', 'tflite','openvino'], help='include formats')
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
parser.add_argument('--train', action='store_true', help='model.train() mode')
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
parser.add_argument('--dynamic', action='store_true', help='ONNX: dynamic axes')
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
parser.add_argument('--opset', type=int, default=12, help='ONNX: opset version')
opt = parser.parse_args()
return opt
def main(opt):
set_logging()
print(colorstr('export: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)