-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathnima_test.py
45 lines (37 loc) · 1.82 KB
/
nima_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
"""Tests for the NIMA."""
import tensorflow as tf
import numpy as np
import nima
class NimaTest(tf.test.TestCase):
def test_tril_indices(self):
with self.test_session() as sess:
indices_3 = sess.run(nima.tril_indices(3))
indices_2_off = sess.run(nima.tril_indices(2, 1))
self.assertAllClose(indices_3[0],
np.array([0, 1, 1, 2, 2, 2], dtype=np.int32))
self.assertAllClose(indices_3[1],
np.array([0, 0, 1, 0, 1, 2], dtype=np.int32))
self.assertAllClose(indices_2_off[0],
np.array([0, 0, 1, 1], dtype=np.int32))
self.assertAllClose(indices_2_off[1],
np.array([0, 1, 0, 1], dtype=np.int32))
def test_ecdf(self):
with self.test_session() as sess:
ecdf = sess.run(nima.ecdf(
tf.constant([[1, 1, 1, 2], [1, 2, 3, 4]], dtype=tf.float32)))
self.assertAllClose(ecdf, np.array(
[[1., 2., 3., 5.], [1., 3., 6., 10.]], dtype=np.float32))
def test_emd_loss(self):
p1 = tf.constant([[0.1, 0.2, 0.3, 0.5], [0.3, 0.3, 0.3, 0.1]])
p2 = tf.constant([[0.3, 0.3, 0.3, 0.1], [0.3, 0.3, 0.4, 0.0]])
with self.test_session() as sess:
loss = sess.run(nima.emd_loss(p1, p2))
self.assertAllClose(loss, 0.14489579)
def test_scores_stats(self):
scores = tf.constant([[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0],
[0.1, 0.2, 0.3, 0.4, 0.5, 0.9, 0.1, 0.2, 0.3, 0]])
scores = scores / tf.reduce_sum(scores, axis=-1, keepdims=True)
with self.test_session() as sess:
means, stds = sess.run(nima.scores_stats(scores))
self.assertAllClose(means, [6.3333333, 5.3])
self.assertAllClose(stds, [2.2110815, 2.05182862])