forked from shuboc/LeetCode-2
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathflip-game-ii.cpp
143 lines (134 loc) · 5 KB
/
flip-game-ii.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
// Time: O(n + c^2), c is max length of consecutive '+'
// Space: O(c)
// The best theory solution (DP, O(n + c^2)) could be seen here:
// https://leetcode.com/discuss/64344/theory-matters-from-backtracking-128ms-to-dp-0ms
class Solution {
public:
bool canWin(string s) {
replace(s.begin(), s.end(), '-', ' ');
istringstream in(s);
int g_final = 0;
vector<int> g; // Sprague-Grundy function of 0 ~ maxlen, O(n) space
for (string t; in >> t; ) { // Split the string
int p = t.size();
while (g.size() <= p) { // O(c) time
string x{t};
int i = 0, j = g.size() - 2;
while (i <= j) { // The S-G value of all subgame states, O(c) time
// Theorem 2: g[game] = g[subgame1]^g[subgame2]^g[subgame3]...;
x[g[i++] ^ g[j--]] = '-';
}
// Find first missing number.
g.emplace_back(x.find('+'));
}
g_final ^= g[p];
}
return g_final; // Theorem 1: First player must win iff g(current_state) != 0
}
};
// Time: O(n + c^3 * 2^c * logc), n is length of string, c is count of "++"
// Space: O(c * 2^c)
// hash solution.
class Solution2 {
public:
struct multiset_hash {
std::size_t operator() (const multiset<int>& set) const {
string set_string;
for (const auto& i : set) {
set_string.append(to_string(i) + " ");
}
return hash<string>()(set_string);
}
};
bool canWin(string s) {
const int n = s.length();
multiset<int> consecutives;
for (int i = 0; i < n - 1; ++i) { // O(n) time
if (s[i] == '+') {
int c = 1;
for (; i < n - 1 && s[i + 1] == '+'; ++i, ++c);
if (c >= 2) {
consecutives.emplace(c);
}
}
}
return canWinHelper(consecutives);
}
private:
bool canWinHelper(const multiset<int>& consecutives) { // O(2^c) time
if (!lookup_.count(consecutives)) {
bool is_win = false;
for (auto it = consecutives.cbegin(); !is_win && it != consecutives.cend(); ++it) { // O(c) time
const int c = *it;
multiset<int> next_consecutives(consecutives);
next_consecutives.erase(next_consecutives.find(c));
for (int i = 0; !is_win && i < c - 1; ++i) { // O(clogc) time
if (i >= 2) {
next_consecutives.emplace(i);
}
if (c - 2 - i >= 2) {
next_consecutives.emplace(c - 2 - i);
}
is_win = !canWinHelper(next_consecutives);
if (i >= 2) {
next_consecutives.erase(next_consecutives.find(i));
}
if (c - 2 - i >= 2) {
next_consecutives.erase(next_consecutives.find(c - 2 - i));
}
lookup_[consecutives] = is_win; // O(c) time
}
}
}
return lookup_[consecutives];
}
unordered_map<multiset<int>, bool, multiset_hash> lookup_;
};
// Time: O(n + c * n * 2^c), try all the possible game strings,
// and each string would have c choices to become the next string
// Space: O(n * 2^c), keep all the possible game strings
// hash solution.
class Solution3 {
public:
bool canWin(string s) {
if (!lookup_.count(s)) {
const int n = s.length();
bool is_win = false;
for (int i = 0; !is_win && i < n - 1; ++i) {
if (s[i] == '+') {
for (; !is_win && i < n - 1 && s[i + 1] == '+'; ++i) {
s[i] = s[i + 1] = '-';
is_win = !canWin(s);
s[i] = s[i + 1] = '+';
lookup_[s] = is_win;
}
}
}
}
return lookup_[s];
}
private:
unordered_map<string, bool> lookup_;
};
// Time: O(n * c!), n is length of string, c is count of "++"
// Space: O(c), recursion would be called at most c in depth.
// Besides, no extra space in each depth for the modified string.
class Solution4 {
public:
bool canWin(string s) {
const int n = s.length();
bool is_win = false;
for (int i = 0; !is_win && i < n - 1; ++i) { // O(n) time
if (s[i] == '+') {
for (; !is_win && i < n - 1 && s[i + 1] == '+'; ++i) { // O(c) time
s[i] = s[i + 1] = '-';
// t(n, c) = c * t(n, c - 1) + n = ... = c! * t(n, 0) + n * c! * (1/0! + 1/1! + ... 1/c!)
// = n * c! + n * c! * O(e) = O(n * c!)
is_win = !canWin(s);
s[i] = s[i + 1] = '+';
}
}
}
return is_win;
}
};