forked from udacity/pdsnd_github
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbikeshare.py
217 lines (167 loc) · 7.34 KB
/
bikeshare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import time
import pandas as pd
import numpy as np
CITY_DATA = { 'chicago': 'chicago.csv',
'new york city': 'new_york_city.csv',
'washington': 'washington.csv' }
def get_filters():
"""
Asks user to specify a city, month, and day to analyze.
Returns:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
"""
print('Hello! Let\'s explore some US bikeshare data!')
# Get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs
while True:
global city
city = input("\nWhich city are you interested in? - Chicago, New York City or Washington? ").lower()
if city in ('chicago', 'new york city', 'washington'):
break
else:
print("Hmm.. That's not quite right. Please enter Chicago, New York City or Washington")
# Get user input for month (all, january, february, ... , june)
while True:
global month
month = input("\nWould you like to filter by month? (y or n) ").lower()
if month == 'y':
month = input("Please enter Jan, Feb or Mar etc: ").lower()
if month in ('jan', 'feb', 'mar', 'apr', 'may', 'jun'):
break
else:
print("That's not quite right. Please enter Jan, Feb, Mar, Apr, Jun, Jul, Aug, Sep, Oct, Nov or Dec")
elif month == 'n':
break
else:
print("That's not quite right. Please enter y or n :")
# Get user input for day of week (all, monday, tuesday, ... sunday)
while True:
global day
day = input("\nWould you like to filter by day? (y or n) ").lower()
if day == 'y':
chosen_day = input("Please enter Mon, Tue or Wed etc: ").lower()
if chosen_day in ('mon', 'tue', 'wed', 'thu', 'fri', 'sat', 'sun'):
break
else:
print("That's not quite right. Please enter Mon, Tue, Wed, Thu, Fri, Sat or Sun :")
elif day == 'n':
break
else:
print("That's not quite right. Please enter y or n :")
print("\nYou selected ", [city])
print('-'*40)
return city, month, day
def load_data(city, month, day):
"""
Loads data for the specified city and filters by month and day if applicable.
Args:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "n" to apply no month filter
(str) day - name of the day of week to filter by, or "n" to apply no day filter
Returns:
df - Pandas DataFrame containing city data filtered by month and day
"""
# Load data file into a dataframe
df = pd.read_csv(CITY_DATA[city]).dropna()
# Convert the Start Time column to datetime
df['Start Time'] = pd.to_datetime(df['Start Time'])
# Extract month and day of week from Start Time to create new columns
df['month'] = df['Start Time'].dt.month
df['day_of_week'] = df['Start Time'].dt.weekday_name
# Filter by month if applicable
if month != 'n':
# Use the index of the months list to get the corresponding int
months = ['jan', 'feb', 'mar', 'apr', 'may', 'jun']
month = months.index(month) + 1
# Filter by month to create the new dataframe
df = df.loc[df['month'] == month]
# Filter by day of week if applicable
if day != 'n':
# Filter by day of week to create the new dataframe
df = df.loc[df['day_of_week'] == day]
return df
def time_stats(df):
"""Displays statistics on the most frequent times of travel."""
print('\nCalculating The Most Frequent Times of Travel...\n')
start_time = time.time()
# Display the most common month
df['month'] = df['Start Time'].dt.month
print("The most common month is ", df['month'].mode())
# Display the most common day of week
df['day_of_week'] = df['Start Time'].dt.weekday_name
print("The most common day of the week is ", df['day_of_week'].mode())
# Display the most common start hour
df['hour'] = df['Start Time'].dt.hour
print("The most popular starting is hour is", df['hour'].mode())
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def station_stats(df):
"""Displays statistics on the most popular stations and trip."""
print('\nCalculating The Most Popular Stations and Trip...\n')
start_time = time.time()
# Display most commonly used start station
print("The most commonly used start station is ", df['Start Station'].mode())
# Display most commonly used end station
print("The most commonly used end station is ", df['End Station'].mode())
# Display most frequent combination of start station and end station trip
print("The most frequent combination of stations are", df[['Start Station', 'End Station']].mode().loc[1: 2])
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def trip_duration_stats(df):
"""Displays statistics on the total and average trip duration."""
print('\nCalculating Trip Duration...\n')
start_time = time.time()
# Display total travel time
print("The total travel time for all trips in city database is", df['Trip Duration'].count(), "minutes")
# Display mean travel time
print("The average travel time is", df['Trip Duration'].mean(), "minutes")
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def user_stats(df):
"""Displays statistics on bikeshare users."""
while True:
print('\nCalculating User Stats...\n')
start_time = time.time()
# Display counts of user types
print("Number of user types:")
user_types = df['User Type'].value_counts()
print(user_types)
if city == 'washington':
break
else:
# Display counts of gender
gender = df['Gender'].value_counts()
print(gender)
# Display earliest, most recent, and most common year of birth
print("The earliest year of birth provided is :", int(df['Birth Year'].min()))
print("The most recent year of birth is :", int(df['Birth Year'].max()))
print("The most common year of birth is :", int(df['Birth Year'].mode()))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
break
def main():
while True:
city, month, day = get_filters()
df = load_data(city, month, day)
time_stats(df)
station_stats(df)
trip_duration_stats(df)
user_stats(df)
raw = input('Would you like to see raw data? Please enter y or n :').lower()
n = 0
if raw != 'y':
break
else:
n+=5
print(df.head(n))
more = input('Would you like to see more? Please enter y or n :').lower()
while more == 'y' and n < df.shape[0]:
n+=5
print(df.head(n))
more = input('Would you like to see more? Please enter y or n :').lower()
restart = input('\nWould you like to restart? Please enter y or n :\n')
if restart.lower() != 'y':
break
if __name__ == "__main__":
main()