-
Notifications
You must be signed in to change notification settings - Fork 123
/
Copy pathpredict_segmentation.py
120 lines (102 loc) · 4.09 KB
/
predict_segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import tensorflow as tf
import os
import matplotlib.pyplot as plt
from enet import ENet, ENet_arg_scope
from preprocessing import preprocess
from scipy.misc import imsave
import numpy as np
slim = tf.contrib.slim
image_dir = './dataset/test/'
images_list = sorted([os.path.join(image_dir, file) for file in os.listdir(image_dir) if file.endswith('.png')])
checkpoint_dir = "./checkpoint_mfb"
checkpoint = tf.train.latest_checkpoint(checkpoint_dir)
num_initial_blocks = 1
skip_connections = False
stage_two_repeat = 2
'''
#Labels to colours are obtained from here:
https://github.com/alexgkendall/SegNet-Tutorial/blob/c922cc4a4fcc7ce279dd998fb2d4a8703f34ebd7/Scripts/test_segmentation_camvid.py
However, the road_marking class is collapsed into the road class in the dataset provided.
Classes:
------------
Sky = [128,128,128]
Building = [128,0,0]
Pole = [192,192,128]
Road_marking = [255,69,0]
Road = [128,64,128]
Pavement = [60,40,222]
Tree = [128,128,0]
SignSymbol = [192,128,128]
Fence = [64,64,128]
Car = [64,0,128]
Pedestrian = [64,64,0]
Bicyclist = [0,128,192]
Unlabelled = [0,0,0]
'''
label_to_colours = {0: [128,128,128],
1: [128,0,0],
2: [192,192,128],
3: [128,64,128],
4: [60,40,222],
5: [128,128,0],
6: [192,128,128],
7: [64,64,128],
8: [64,0,128],
9: [64,64,0],
10: [0,128,192],
11: [0,0,0]}
#Create the photo directory
photo_dir = checkpoint_dir + "/test_images"
if not os.path.exists(photo_dir):
os.mkdir(photo_dir)
#Create a function to convert each pixel label to colour.
def grayscale_to_colour(image):
print 'Converting image...'
image = image.reshape((360, 480, 1))
image = np.repeat(image, 3, axis=-1)
for i in xrange(image.shape[0]):
for j in xrange(image.shape[1]):
label = int(image[i][j][0])
image[i][j] = np.array(label_to_colours[label])
return image
with tf.Graph().as_default() as graph:
images_tensor = tf.train.string_input_producer(images_list, shuffle=False)
reader = tf.WholeFileReader()
key, image_tensor = reader.read(images_tensor)
image = tf.image.decode_png(image_tensor, channels=3)
# image = tf.image.resize_image_with_crop_or_pad(image, 360, 480)
# image = tf.cast(image, tf.float32)
image = preprocess(image)
images = tf.train.batch([image], batch_size = 10, allow_smaller_final_batch=True)
#Create the model inference
with slim.arg_scope(ENet_arg_scope()):
logits, probabilities = ENet(images,
num_classes=12,
batch_size=10,
is_training=True,
reuse=None,
num_initial_blocks=num_initial_blocks,
stage_two_repeat=stage_two_repeat,
skip_connections=skip_connections)
variables_to_restore = slim.get_variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
def restore_fn(sess):
return saver.restore(sess, checkpoint)
predictions = tf.argmax(probabilities, -1)
predictions = tf.cast(predictions, tf.float32)
print 'HERE', predictions.get_shape()
sv = tf.train.Supervisor(logdir=None, init_fn=restore_fn)
with sv.managed_session() as sess:
for i in xrange(len(images_list) / 10 + 1):
segmentations = sess.run(predictions)
# print segmentations.shape
for j in xrange(segmentations.shape[0]):
#Stop at the 233rd image as it's repeated
if i*10 + j == 223:
break
converted_image = grayscale_to_colour(segmentations[j])
print 'Saving image %s/%s' %(i*10 + j, len(images_list))
plt.axis('off')
plt.imshow(converted_image)
imsave(photo_dir + "/image_%s.png" %(i*10 + j), converted_image)
# plt.show()