-
Notifications
You must be signed in to change notification settings - Fork 507
/
Copy patheval.lua
63 lines (53 loc) · 1.66 KB
/
eval.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
require 'torch'
require 'nn'
require 'LanguageModel'
require 'util.DataLoader'
local utils = require 'util.utils'
local cmd = torch.CmdLine()
cmd:option('-checkpoint', '')
cmd:option('-split', 'val')
cmd:option('-gpu', 0)
cmd:option('-gpu_backend', 'cuda')
local opt = cmd:parse(arg)
-- Set up GPU stuff
local dtype = 'torch.FloatTensor'
if opt.gpu >= 0 and opt.gpu_backend == 'cuda' then
require 'cutorch'
require 'cunn'
cutorch.setDevice(opt.gpu + 1)
dtype = 'torch.CudaTensor'
print(string.format('Running with CUDA on GPU %d', opt.gpu))
elseif opt.gpu >= 0 and opt.gpu_backend == 'opencl' then
require 'cltorch'
require 'clnn'
cltorch.setDevice(opt.gpu + 1)
dtype = torch.Tensor():cl():type()
print(string.format('Running with OpenCL on GPU %d', opt.gpu))
else
-- Memory benchmarking is only supported in CUDA mode
print 'Running in CPU mode'
end
-- Load the checkpoint and model
local checkpoint = torch.load(opt.checkpoint)
local model = checkpoint.model
model:type(dtype)
local crit = nn.CrossEntropyCriterion():type(dtype)
-- Load the vocab and data
local loader = DataLoader(checkpoint.opt)
local N, T = checkpoint.opt.batch_size, checkpoint.opt.seq_length
-- Evaluate the model on the specified split
model:evaluate()
model:resetStates()
local num = loader.split_sizes[opt.split]
local loss = 0
for i = 1, num do
print(string.format('%s batch %d / %d', opt.split, i, num))
local x, y = loader:nextBatch(opt.split)
N = x:size(1)
x = x:type(dtype)
y = y:type(dtype):view(N * T)
local scores = model:forward(x):view(N * T, -1)
loss = loss + crit:forward(scores, y)
end
loss = loss / num
print(string.format('%s loss = %f', opt.split, loss))