-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathcongan_train.py
executable file
·327 lines (275 loc) · 13.3 KB
/
congan_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import os, sys
sys.path.append(os.getcwd())
import time
import functools
import argparse
import numpy as np
#import sklearn.datasets
import libs as lib
import libs.plot
from tensorboardX import SummaryWriter
import pdb
import gpustat
from models.conwgan import *
import torch
import torchvision
from torch import nn
from torch import autograd
from torch import optim
from torchvision import transforms, datasets
from torch.autograd import grad
from timeit import default_timer as timer
import torch.nn.init as init
DATA_DIR = '/datasets/lsun'
VAL_DIR = '/datasets/lsun'
IMAGE_DATA_SET = 'lsun' #change this to something else, e.g. 'imagenets' or 'raw' if your data is just a folder of raw images.
#If you use lmdb, you'll need to write the loader by yourself, see load_data
TRAINING_CLASS = ['dining_room_train', 'bridge_train', 'restaurant_train', 'tower_train']
VAL_CLASS = ['dining_room_val', 'bridge_val', 'restaurant_val', 'tower_val']
NUM_CLASSES = 4
if len(DATA_DIR) == 0:
raise Exception('Please specify path to data directory in gan_64x64.py!')
RESTORE_MODE = False # if True, it will load saved model from OUT_PATH and continue to train
START_ITER = 0 # starting iteration
OUTPUT_PATH = '/path/to/output/' # output path where result (.e.g drawing images, cost, chart) will be stored
# MODE = 'wgan-gp'
DIM = 64 # Model dimensionality
CRITIC_ITERS = 5 # How many iterations to train the critic for
GENER_ITERS = 1
N_GPUS = 1 # Number of GPUs
BATCH_SIZE = 64# Batch size. Must be a multiple of N_GPUS
END_ITER = 100000 # How many iterations to train for
LAMBDA = 10 # Gradient penalty lambda hyperparameter
OUTPUT_DIM = 64*64*3 # Number of pixels in each iamge
ACGAN_SCALE = 1. # How to scale the critic's ACGAN loss relative to WGAN loss
ACGAN_SCALE_G = 1. # How to scale generator's ACGAN loss relative to WGAN loss
def showMemoryUsage(device=1):
gpu_stats = gpustat.GPUStatCollection.new_query()
item = gpu_stats.jsonify()["gpus"][device]
print('Used/total: ' + "{}/{}".format(item["memory.used"], item["memory.total"]))
def weights_init(m):
if isinstance(m, MyConvo2d):
if m.conv.weight is not None:
if m.he_init:
init.kaiming_uniform_(m.conv.weight)
else:
init.xavier_uniform_(m.conv.weight)
if m.conv.bias is not None:
init.constant_(m.conv.bias, 0.0)
if isinstance(m, nn.Linear):
if m.weight is not None:
init.xavier_uniform_(m.weight)
if m.bias is not None:
init.constant_(m.bias, 0.0)
def load_data(path_to_folder, classes):
data_transform = transforms.Compose([
transforms.Scale(64),
transforms.CenterCrop(64),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5, 0.5, 0.5])
])
if IMAGE_DATA_SET == 'lsun':
dataset = datasets.LSUN(path_to_folder, classes=classes, transform=data_transform)
else:
dataset = datasets.ImageFolder(root=path_to_folder,transform=data_transform)
dataset_loader = torch.utils.data.DataLoader(dataset,batch_size=BATCH_SIZE, shuffle=True, num_workers=5, drop_last=True, pin_memory=True)
return dataset_loader
def calc_gradient_penalty(netD, real_data, fake_data):
alpha = torch.rand(BATCH_SIZE, 1)
alpha = alpha.expand(BATCH_SIZE, int(real_data.nelement()/BATCH_SIZE)).contiguous()
alpha = alpha.view(BATCH_SIZE, 3, DIM, DIM)
alpha = alpha.to(device)
fake_data = fake_data.view(BATCH_SIZE, 3, DIM, DIM)
interpolates = alpha * real_data.detach() + ((1 - alpha) * fake_data.detach())
interpolates = interpolates.to(device)
interpolates.requires_grad_(True)
disc_interpolates, _ = netD(interpolates)
gradients = autograd.grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=torch.ones(disc_interpolates.size()).to(device),
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * LAMBDA
return gradient_penalty
def generate_image(netG, noise=None):
if noise is None:
rand_label = np.random.randint(0, NUM_CLASSES, BATCH_SIZE)
noise = gen_rand_noise_with_label(rand_label)
with torch.no_grad():
noisev = noise
samples = netG(noisev)
samples = samples.view(BATCH_SIZE, 3, DIM, DIM)
samples = samples * 0.5 + 0.5
return samples
def gen_rand_noise_with_label(label=None):
if label is None:
label = np.random.randint(0, NUM_CLASSES, BATCH_SIZE)
#attach label into noise
noise = np.random.normal(0, 1, (BATCH_SIZE, 128))
prefix = np.zeros((BATCH_SIZE, NUM_CLASSES))
prefix[np.arange(BATCH_SIZE), label] = 1
noise[np.arange(BATCH_SIZE), :NUM_CLASSES] = prefix[np.arange(BATCH_SIZE)]
noise = torch.from_numpy(noise).float()
noise = noise.to(device)
return noise
cuda_available = torch.cuda.is_available()
device = torch.device("cuda" if cuda_available else "cpu")
fixed_label = []
for c in range(BATCH_SIZE):
fixed_label.append(c%NUM_CLASSES)
fixed_noise = gen_rand_noise_with_label(fixed_label)
if RESTORE_MODE:
aG = torch.load(OUTPUT_PATH + "generator.pt")
aD = torch.load(OUTPUT_PATH + "discriminator.pt")
else:
aG = GoodGenerator(64,64*64*3)
aD = GoodDiscriminator(64, NUM_CLASSES)
aG.apply(weights_init)
aD.apply(weights_init)
LR = 1e-4
optimizer_g = torch.optim.Adam(aG.parameters(), lr=LR, betas=(0,0.9))
optimizer_d = torch.optim.Adam(aD.parameters(), lr=LR, betas=(0,0.9))
aux_criterion = nn.CrossEntropyLoss() # nn.NLLLoss()
one = torch.FloatTensor([1])
mone = one * -1
aG = aG.to(device)
aD = aD.to(device)
one = one.to(device)
mone = mone.to(device)
writer = SummaryWriter()
#Reference: https://github.com/caogang/wgan-gp/blob/master/gan_cifar10.py
def train():
#writer = SummaryWriter()
dataloader = load_data(DATA_DIR, TRAINING_CLASS)
dataiter = iter(dataloader)
for iteration in range(START_ITER, END_ITER):
start_time = time.time()
print("Iter: " + str(iteration))
start = timer()
#---------------------TRAIN G------------------------
for p in aD.parameters():
p.requires_grad_(False) # freeze D
gen_cost = None
for i in range(GENER_ITERS):
print("Generator iters: " + str(i))
aG.zero_grad()
f_label = np.random.randint(0, NUM_CLASSES, BATCH_SIZE)
noise = gen_rand_noise_with_label(f_label)
noise.requires_grad_(True)
fake_data = aG(noise)
gen_cost, gen_aux_output = aD(fake_data)
aux_label = torch.from_numpy(f_label).long()
aux_label = aux_label.to(device)
aux_errG = aux_criterion(gen_aux_output, aux_label).mean()
gen_cost = -gen_cost.mean()
g_cost = ACGAN_SCALE_G*aux_errG + gen_cost
g_cost.backward()
optimizer_g.step()
end = timer()
print(f'---train G elapsed time: {end - start}')
#---------------------TRAIN D------------------------
for p in aD.parameters(): # reset requires_grad
p.requires_grad_(True) # they are set to False below in training G
for i in range(CRITIC_ITERS):
print("Critic iter: " + str(i))
start = timer()
aD.zero_grad()
# gen fake data and load real data
f_label = np.random.randint(0, NUM_CLASSES, BATCH_SIZE)
noise = gen_rand_noise_with_label(f_label)
with torch.no_grad():
noisev = noise # totally freeze G, training D
fake_data = aG(noisev).detach()
end = timer(); print(f'---gen G elapsed time: {end-start}')
start = timer()
batch = next(dataiter, None)
if batch is None:
dataiter = iter(dataloader)
batch = dataiter.next()
real_data = batch[0] #batch[1] contains labels
real_data.requires_grad_(True)
real_label = batch[1]
#print("r_label" + str(r_label))
end = timer(); print(f'---load real imgs elapsed time: {end-start}')
start = timer()
real_data = real_data.to(device)
real_label = real_label.to(device)
# train with real data
disc_real, aux_output = aD(real_data)
aux_errD_real = aux_criterion(aux_output, real_label)
errD_real = aux_errD_real.mean()
disc_real = disc_real.mean()
# train with fake data
disc_fake, aux_output = aD(fake_data)
#aux_errD_fake = aux_criterion(aux_output, fake_label)
#errD_fake = aux_errD_fake.mean()
disc_fake = disc_fake.mean()
#showMemoryUsage(0)
# train with interpolates data
gradient_penalty = calc_gradient_penalty(aD, real_data, fake_data)
#showMemoryUsage(0)
# final disc cost
disc_cost = disc_fake - disc_real + gradient_penalty
disc_acgan = errD_real #+ errD_fake
(disc_cost + ACGAN_SCALE*disc_acgan).backward()
w_dist = disc_fake - disc_real
optimizer_d.step()
#------------------VISUALIZATION----------
if i == CRITIC_ITERS-1:
writer.add_scalar('data/disc_cost', disc_cost, iteration)
#writer.add_scalar('data/disc_fake', disc_fake, iteration)
#writer.add_scalar('data/disc_real', disc_real, iteration)
writer.add_scalar('data/gradient_pen', gradient_penalty, iteration)
writer.add_scalar('data/ac_disc_cost', disc_acgan, iteration)
writer.add_scalar('data/ac_gen_cost', aux_errG, iteration)
#writer.add_scalar('data/d_conv_weight_mean', [i for i in aD.children()][0].conv.weight.data.clone().mean(), iteration)
#writer.add_scalar('data/d_linear_weight_mean', [i for i in aD.children()][-1].weight.data.clone().mean(), iteration)
#writer.add_scalar('data/fake_data_mean', fake_data.mean())
#writer.add_scalar('data/real_data_mean', real_data.mean())
#if iteration %200==99:
# paramsD = aD.named_parameters()
# for name, pD in paramsD:
# writer.add_histogram("D." + name, pD.clone().data.cpu().numpy(), iteration)
if iteration %200==199:
body_model = [i for i in aD.children()][0]
layer1 = body_model.conv
xyz = layer1.weight.data.clone()
tensor = xyz.cpu()
tensors = torchvision.utils.make_grid(tensor, nrow=8,padding=1)
writer.add_image('D/conv1', tensors, iteration)
end = timer(); print(f'---train D elapsed time: {end-start}')
#---------------VISUALIZATION---------------------
writer.add_scalar('data/gen_cost', gen_cost, iteration)
#if iteration %200==199:
# paramsG = aG.named_parameters()
# for name, pG in paramsG:
# writer.add_histogram('G.' + name, pG.clone().data.cpu().numpy(), iteration)
#----------------------Generate images-----------------
lib.plot.plot(OUTPUT_PATH + 'time', time.time() - start_time)
lib.plot.plot(OUTPUT_PATH + 'train_disc_cost', disc_cost.cpu().data.numpy())
lib.plot.plot(OUTPUT_PATH + 'train_gen_cost', gen_cost.cpu().data.numpy())
lib.plot.plot(OUTPUT_PATH + 'wasserstein_distance', w_dist.cpu().data.numpy())
if iteration % 200==199:
val_loader = load_data(VAL_DIR, VAL_CLASS)
dev_disc_costs = []
for _, images in enumerate(val_loader):
imgs = torch.Tensor(images[0])
imgs = imgs.to(device)
with torch.no_grad():
imgs_v = imgs
D, _ = aD(imgs_v)
_dev_disc_cost = -D.mean().cpu().data.numpy()
dev_disc_costs.append(_dev_disc_cost)
lib.plot.plot(OUTPUT_PATH + 'dev_disc_cost.png', np.mean(dev_disc_costs))
lib.plot.flush()
gen_images = generate_image(aG, fixed_noise)
torchvision.utils.save_image(gen_images, OUTPUT_PATH + 'samples_{}.png'.format(iteration), nrow=8, padding=2)
grid_images = torchvision.utils.make_grid(gen_images, nrow=8, padding=2)
writer.add_image('images', grid_images, iteration)
#gen_images = generate_image(iteration, aG, persistant_noise)
#gen_images = torchvision.utils.make_grid(torch.from_numpy(gen_images), nrow=8, padding=1)
#writer.add_image('images', gen_images, iteration)
#----------------------Save model----------------------
torch.save(aG, OUTPUT_PATH + "generator.pt")
torch.save(aD, OUTPUT_PATH + "discriminator.pt")
lib.plot.tick()
train()