-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathion-rfc-04-binary-encoding.nroff
878 lines (717 loc) · 28.8 KB
/
ion-rfc-04-binary-encoding.nroff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
.tm 4. Binary Encoding ................................................ \n%
.ti 0
4. Ion Binary Encoding
The Ion binary encoding is a compact and efficient value stream. In the
binary format, a value stream always starts with a binary version marker
(BVM) that specifies the precise Ion version used to encode the data
that follows:
.KS
.nf
7 0 7 0 7 0 7 0
+------+-------+-------+------+
binary version marker | 0xE0 | major | minor | 0xEA |
+------+-------+-------+------+
.KE
.in 3
The four-octet BVM also acts as a "magic cookie" to distinguish Ion
binary data from other formats, including Ion text data. Its first octet
(in sequence from the beginning of the stream) is 0xE0 and its fourth
octet is 0xEA. The second and third octets contain major and minor
version numbers. The only valid BVM, identifying Ion 1.0, is
0xE0 0x01 0x00 0xEA.
An Ion value stream starts with a BVM, followed by zero or more values
which contain the actual data. These values are generally referred to as
"top-level values".
.KS
.nf
+-------------------------+
value stream | binary version marker |
+-------------------------+
: value :
+=========================+
⋮
+=========================+
: binary version marker :
+=========================+
: value :
+=========================+
⋮
.KE
.in 3
A value stream can contain other, perhaps different, BVMs interspersed
with the top-level values. Each BVM resets the decoder to the
appropriate initial state for the given version of Ion. This allows the
stream to be constructed by concatenating data from different sources,
without requiring transcoding to a single version of the format.
Note: The BVM is not a value and should not be visible to or manipulable
by the user; it is internal data managed by and for the
Ion implementation.
.tm _ 4.1. Basic Field Formats ....................................... \n%
.ti 0
4.1. Basic Field Formats
Binary-encoded Ion values are comprised of one or more fields, and the
fields use a small number of basic formats (separate from the Ion types
visible to users).
.tm _ 4.1.1. UInt and Int Fields .................................. \n%
.ti 0
4.1.1. UInt and Int Fields
UInt and Int fields represent fixed-length unsigned and signed integer
values. These field formats are always used in some context that clearly
indicates the number of octets in the field.
.KS
.nf
7 0
+-------------------------+
UInt field | bits |
+-------------------------+
: bits :
+=========================+
⋮
+=========================+
: bits :
+=========================+
7 0
.KE
.in 3
UInts are sequences of octets, interpreted as big-endian.
.KS
.nf
7 6 0
+---+---------------------+
Int field | | bits |
+---+---------------------+
^
|
+--sign
+=========================+
: bits :
+=========================+
⋮
+=========================+
: bits :
+=========================+
7 6 0
.KE
.in 3
Ints are sequences of octets, interpreted as sign-and-magnitude big
endian integers (with the sign on the highest-order bit of the first
octet). This means that the representations of 123456 and -123456 should
only differ in their sign bit. (See
http://en.wikipedia.org/wiki/Signed_number_representation for more
info.)
.tm _ 4.1.2. VarUInt and VarInt Fields ............................ \n%
.ti 0
4.1.2. VarUInt and VarInt Fields
VarUInt and VarInt fields represent self-delimiting, variable-length
unsigned and signed integer values. These field formats are always used
in a context that does not indicate the number of octets in the field;
the last octet (and only the last octet) has its high-order bit set to
terminate the field.
.KS
.nf
7 6 0
+===+=====================+
VarUInt field : 0 : bits :
+===+=====================+
⋮
7 6 0
+---+---------------------+
| 1 | bits |
+---+---------------------+
.KE
.in 3
VarUInts are a sequence of octets. The high-order bit of the last octet
is one, indicating the end of the sequence. All other high-order bits
must be zero.
.KS
.nf
7 6 5 0 7 6 5 0
+===+ +---+
VarInt field : 0 : payload ... | 1 | payload
+===+ +---+
+---+-----------------+ +=================+
| | magnitude | ... : magnitude :
+---+-----------------+ +=================+
^ ^ ^
| | |
| +--sign +--end flag
+--end flag
.KE
.in 3
VarInts are sign-and-magnitude integers, like Ints. Their layout is
complicated, as there is one special leading bit (the sign) and one
special trailing bit (the terminator). In the above diagram, we put the
two concepts on different layers.
The high-order bit in the top layer is an end-of-sequence marker. It
must be set on the last octet in the representation and clear in all
other octets. The second-highest order bit (0x40) is a sign flag in the
first octet of the representation, but part of the extension bits for
all other octets. For single-octet VarInt values, this collapses
down to:
.KS
.nf
7 6 5 0
+---+---+-------------+
single octet VarInt field | 1 | | magnitude |
+---+---+-------------+
^
|
+--sign
.KE
.in 3
.tm _ 4.2. Typed Value Formats ....................................... \n%
.ti 0
4.2. Typed Value Formats
A value consists of a one-octet type descriptor, possibly followed by a
length in octets, possibly followed by a representation.
.KS
.nf
7 4 3 0
+---------+---------+
value | T | L |
+---------+---------+======+
: length [VarUInt] :
+==========================+
: representation :
+==========================+
.KE
.in 3
The type descriptor octet has two subfields: a four-bit type code T, and
a four-bit length L.
Each value of T identifies the format of the representation, and
generally (though not always) identifies an Ion datatype. Each type code
T defines the semantics of its length field L as described below.
The length value - the number of octets in the representation field(s) -
is encoded in L and/or length fields, depending on the magnitude and on
some particulars of the actual type. The length field is empty (taking
up no octets in the message) if we can store the length value inside L
itself. If the length field is not empty, then it is a single VarUInt
field. The representation may also be empty (no octets) in some cases,
as detailed below.
Unless otherwise defined, the length of the representation is encoded
as follows:
.in 9
.ti 6
o If the value is null (for that type), then L is set to 15.
.ti 6
o If the representation is less than 14 bytes long, then L is set to the
length, and the length field is omitted.
.ti 6
o If the representation is at least 14 bytes long, then L is set to 14,
and the length field is set to the representation length, encoded as a
VarUInt field.
.tm _ 4.2.1. 0x0: Nulls ........................................... \n%
.ti 0x0
4.2.1. 0: Nulls
.KS
.nf
7 4 3 0
+---------+---------+
Null value | 0x0 | 0xF |
+---------+---------+
.KE
.in 3
Values of type null always have empty lengths and representations. The
only valid L value is 15, representing the only value of this type,
null.null.
.tm _ 4.2.1.1. NOP Padding ..................................... \n%
.ti 0
4.2.1.1. NOP Padding
.KS
.nf
7 4 3 0
+---------+---------+
NOP Pad | 0x0 | L |
+---------+---------+======+
: length [VarUInt] :
+--------------------------+
| ignored octets |
+--------------------------+
.KE
.in 3
In addition to null.null, the null type code is used to encode padding
that has no operation (NOP padding). This can be used for "binary
whitespace" when alignment of octet boundaries is needed or to support
in-place editing. Such encodings are not considered values and are
ignored by the processor.
In this encoding, L specifies the number of octets that should
be ignored.
The following is a single byte NOP pad. The NOP padding typedesc bytes
are counted as padding:
.nf
0x00
.in 3
The following is a two byte NOP pad:
.nf
0x01 0xFE
.in 3
Note that the single byte of "payload" 0xFE is arbitrary and ignored by
the parser.
The following is a 16 byte NOP pad:
.nf
0x0E 0x8E 0x00 ... <12 arbitrary octets> ... 0x00
.in 3
NOP padding is valid anywhere a value can be encoded, except for within
an annotation wrapper. NOP padding in struct requires additional
encoding considerations.
.tm _ 4.2.2. 0x1: Booleans ........................................ \n%
.ti 0
4.2.2. 0x1: Booleans
.KS
.nf
7 4 3 0
+---------+---------+
Bool value | 0x1 | rep |
+---------+---------+
.KE
.in 3
Values of type bool always have empty lengths, and their representation
is stored in the typedesc itself (rather than after the typedesc). A
representation of 0 means false; a representation of 1 means true; and a
representation of 15 means null.bool.
.tm _ 4.2.3. 0x2 & 0x3: Integers .................................. \n%
.ti 0
4.2.3. 0x2 & 0x3: Integers
Values of type int are stored using two type codes: 2 for positive
values and 3 for negative values. Both codes use a UInt subfield to
store the magnitude.
.KS
.nf
7 4 3 0
+---------+---------+
Int value | 0x2/0x3 | L |
+---------+---------+======+
: length [VarUInt] :
+==========================+
: magnitude [UInt] :
+==========================+
.KE
.in 3
Zero is always stored as positive; negative zero is illegal.
If L is 0 the value is zero, and there are no length or magnitude
subfields. As a result, when T is 3, both L and the magnitude subfield
must be non-zero.
With either type code 2 or 3, if L is 15, then the value is null.int and
the magnitude is empty. Note that this implies there are two equivalent
binary representations of null integer values.
.tm _ 4.2.4. 0x4: Floats .......................................... \n%
.ti 0
4.2.4. 0x4: Floats
.KS
.nf
7 4 3 0
+---------+---------+
Float value | 0x4 | L |
+---------+---------+-----------+
| representation [IEEE-754] |
+-------------------------------+
.KE
Floats are encoded as big endian octets of their IEEE 754 bit patterns.
The L field of floats encodes the size of the IEEE-754 value.
.in 9
.ti 6
o If L is 4, then the representation is 32 bits (4 octets).
.ti 6
o If L is 8, then the representation is 64 bits (8 octets).
.in 3
There are two exceptions for the L field:
.in 9
.ti 6
o If L is 0, then the value is 0e0 and representation is empty.
Note: This is not to be confused with -0e0 which is a distinct value
and in current Ion must be encoded as a normal IEEE float
bit pattern.
.ti 6
o If L is 15, then the value is null.float and the representation is
empty.
.in 3
Note: Ion 1.0 only supports 32-bit and 64-bit float values (i.e. L
size 4 or 8), but future versions of the standard may support
16-bit and 128-bit float values.
.tm _ 4.2.5. 0x5: Decimals ........................................ \n%
.ti 0
4.2.5. 0x5: Decimals
.KS
.nf
7 4 3 0
+---------+---------+
Decimal value | 0x5 | L |
+---------+---------+======+
: length [VarUInt] :
+--------------------------+
| exponent [VarInt] |
+--------------------------+
| coefficient [Int] |
+--------------------------+
.KE
.in 3
Decimal representations have two components: exponent (a VarInt) and
coefficient (an Int). The decimal's value is coefficient * 10 ^
exponent.
The length of the coefficient subfield is the total length of the
representation minus the length of exponent. The subfield should not be
present (that is, it has zero length) when the coefficient's value is
(positive) zero.
If L is zero the value is `0`, and there are no length, exponent, or
coefficient subfields.
There are two exceptions for the L field:
.in9
.ti 6
1. If L is 0, then the value is `0.` (aka `0d0`), and there are no length,
exponent, or coefficient subfields.
.ti 6
2. If L is 15, then the value is `null.decimal` and there are no length,
exponent, or coefficient subfields.
.in 3
.tm _ 4.2.6. 0x6: Timestamps ...................................... \n%
.ti 0
4.2.6. 0x6: Timestamps
.KS
.nf
7 4 3 0
+---------+---------+
Timestamp value | 0x6 | L |
+---------+---------+========+
: length [VarUInt] :
+----------------------------+
| offset [VarInt] |
+----------------------------+
| year [VarUInt] |
+----------------------------+
: month [VarUInt] :
+============================+
: day [VarUInt] :
+============================+
: hour [VarUInt] :
+==== ====+
: minute [VarUInt] :
+============================+
: second [VarUInt] :
+============================+
: fraction_exponent [VarInt] :
+============================+
: fraction_coefficient [Int] :
+============================+
.KE
.in 3
Timestamp representations have 7 components, where 5 of these components
are optional depending on the precision of the timestamp. The 2
non-optional components are offset and year. The 5 optional components
are (from least precise to most precise): month, day, hour and minute,
second, fraction_exponent and fraction_coefficient. All of these 7
components are in Universal Coordinated Time (UTC).
The offset denotes the local-offset portion of the timestamp, in minutes
difference from UTC.
The hour and minute is considered as a single component, that is, it is
illegal to have hour but not minute (and vice versa).
The fraction_exponent and fraction_coefficient denote the fractional
seconds of the timestamp as a decimal value. The fractional seconds'
value is coefficient * 10 ^ exponent. It must be greater than or equal
to zero and less than 1. A missing coefficient defaults to zero.
Fractions whose coefficient is zero and exponent is greater than -1 are
ignored. The following hex encoded timestamps are equivalent:
.nf
68 80 0F D0 81 81 80 80 80 // 2000-01-01T00:00:00Z with no fractional seconds
69 80 0F D0 81 81 80 80 80 80 // The same instant with 0d0 fractional seconds and implicit zero coefficient
6A 80 0F D0 81 81 80 80 80 80 00 // The same instant with 0d0 fractional seconds and explicit zero coefficient
69 80 0F D0 81 81 80 80 80 C0 // The same instant with 0d-0 fractional seconds
69 80 0F D0 81 81 80 80 80 81 // The same instant with 0d1 fractional seconds
.in 3
Conversely, none of the following are equivalent:
.KS
.nf
68 80 0F D0 81 81 80 80 80 // 2000-01-01T00:00:00Z with no fractional seconds
69 80 0F D0 81 81 80 80 80 C1 // 2000-01-01T00:00:00.0Z
69 80 0F D0 81 81 80 80 80 C2 // 2000-01-01T00:00:00.00Z
.KE
.in 3
If a timestamp representation has a component of a certain precision,
each of the less precise components must also be present or else the
representation is illegal. For example, a timestamp representation that
has a fraction_exponent and fraction_coefficient component but not the
month component, is illegal.
Note: The component values in the binary encoding are always in UTC,
while components in the text encoding are in the local time! This means
that transcoding requires a conversion between UTC and local time.
.tm _ 4.2.7. 0x7: Symbols ......................................... \n%
.ti 0
4.2.7. 0x7: Symbols
.KS
.nf
7 4 3 0
+---------+---------+
Symbol value | 0x7 | L |
+---------+---------+======+
: length [VarUInt] :
+--------------------------+
| symbol ID [UInt] |
+--------------------------+
.KE
.in 3
In the binary encoding, all Ion symbols are stored as integer symbol IDs
whose text values are provided by a symbol table. If L is zero then the
symbol ID is zero and the length and symbol ID fields are omitted.
See Ion Symbols for more details about symbol representations and
symbol tables
.tm _ 4.2.8. 0x8: Strings ......................................... \n%
.ti 0
4.2.8. 0x8: Strings
.KS
.nf
7 4 3 0
+---------+---------+
String value | 0x8 | L |
+---------+---------+======+
: length [VarUInt] :
+==========================+
: representation [UTF8] :
+==========================+
.KE
.in 3
These are always sequences of Unicode characters, encoded as a sequence
of UTF-8 octets. If L is zero then the string is the empty string "" and
the length and representation fields are omitted.
.tm _ 4.2.9. 0x9: Clobs ........................................... \n%
.ti 0
4.2.9. 0x9: Clobs
.KS
.nf
7 4 3 0
+---------+---------+
Clob value | 0x9 | L |
+---------+---------+======+
: length [VarUInt] :
+==========================+
: data [Bytes] :
+==========================+
.KE
.in 3
Values of type clob are encoded as a sequence of octets that should be
interpreted as text with an unknown encoding (and thus opaque to
the application).
Zero-length clobs are legal, so L may be zero.
.tm _ 4.2.10. 0xA: Blobs .......................................... \n%
.ti 0
4.2.10. 0xA: Blobs
.KS
.nf
7 4 3 0
+---------+---------+
Blob value | 0xA | L |
+---------+---------+======+
: length [VarUInt] :
+==========================+
: data [Bytes] :
+==========================+
.KE
.in 3
This is a sequence of octets with no interpretation (and thus opaque to
the application).
Zero-length blobs are legal, so L may be zero.
.tm _ 4.2.11. 0xB: Lists .......................................... \n%
.ti 0
4.2.11. 0xB: Lists
.KS
.nf
7 4 3 0
+---------+---------+
List value | 0xB | L |
+---------+---------+======+
: length [VarUInt] :
+==========================+
: value :
+==========================+
:
.KE
.in 3
The representation fields of a list value are simply nested Ion values.
When L is 15, the value is null.list and there's no length or nested
values. When L is 0, the value is an empty list, and there's no length
or nested values.
Because values indicate their total lengths in octets, it is possible to
locate the beginning of each successive value in constant time.
.tm _ 4.2.12. 0xC: S-Expressions .................................. \n%
.ti 0
4.2.12. 0xC: S-Expressions
.KS
.nf
7 4 3 0
+---------+---------+
Sexp value | 0xC | L |
+---------+---------+======+
: length [VarUInt] :
+==========================+
: value :
+==========================+
:
.KE
.in 3
Values of type sexp are encoded exactly as are list values, except with
a different type code.
.tm _ 4.2.13. 0xD: Structures ..................................... \n%
.ti 0
4.2.13. 0xD: Structures
Structs are encoded as sequences of symbol/value pairs. Since all
symbols are encoded as positive integers, we can omit the typedesc on
the field names and just encode the integer value.
.KS
.nf
7 4 3 0
+---------+---------+
Struct value | 0xD | L |
+---------+---------+======+
: length [VarUInt] :
+======================+===+==================+
: field name [VarUInt] : value :
+======================+======================+
⋮ ⋮
.KE
.in 3
Binary-encoded structs support a special case where the fields are known
to be sorted such that the field-name integers are increasing. This
state exists when L is one. Thus:
.in 9
.ti 6
o When L is 0, the value is an empty struct, and there's no length or
nested fields.
.ti 6
o When L is 1, the struct has at least one symbol/value pair, the length
field exists, and the field name integers are sorted in
increasing order.
.ti 6
o When L is 14, the length field exists, and no assertion is made about
field ordering.
.ti 6
o When L is 15, the value is null.struct, and there's no length or
nested fields.
.ti 6
o Otherwise, 1 < L < 14 and there is no length field as _L_ is enough to
represent the struct size. No assertion is made about field ordering.
.in 3
Note: Because VarUInts depend on end tags to indicate their lengths,
finding the succeeding value requires parsing the field name prefix.
However, VarUInts are a more compact representation than Int values.
.tm _ 4.2.13.1. NOP Padding in struct Fields ................... \n%
.ti 0
4.2.13.1. NOP Padding in struct Fields
NOP Padding in struct values requires additional consideration of the
field name element. If the "value" of a struct field is the NOP pad,
then the field name is ignored. This means that it is not possible to
encode padding in a struct value that is less than two bytes.
Implementations should use symbol ID zero as the field name to emphasize
the lack of meaning of the field name. For more general details about
the semantics of symbol ID zero, refer to Ion Symbols.
For example, consider the following empty struct with three bytes
of padding:
.nf
0xD3 0x80 0x01 0xAC
.in 3
In the above example, the struct declares that it is three bytes large,
and the encoding of the pair of symbol ID zero followed by a pad that is
two bytes large (note the last octet 0xAC is completely arbitrary and
never interpreted by an implementation).
The following is an example of struct with a single field with four
total bytes of padding:
.nf
0xD7 0x84 0x81 "a" 0x80 0x02 0x01 0x02
.in 3
The above is equivalent to {name:"a"}.
The following is also a empty struct, with a two byte pad:
.nf
0xD2 0x8F 0x00
.in 3
In the above example, the field name of symbol ID 15 is ignored
(regardless of if it is a valid symbol ID).
The following is malformed because there is an annotation "wrapping" a
NOP pad, which is not allowed generally for annotations:
.KS
.nf
// {$0:name::<NOP>}
0xD5 0x80 0xE3 0x81 0x84 0x00
.KE
.in 3
.tm _ 4.2.14. 0xE: Type Annotations ............................... \n%
.ti 0
4.2.14. 0xE: Type Annotations
This special type code doesn't map to an Ion value type, but instead is
a wrapper used to associate annotations with content.
Annotations are a special type that wrap content identified by the other
type codes. The annotations themselves are encoded as integer
symbol IDs.
.KS
.nf
7 4 3 0
+---------+---------+
Annotation wrapper | 0xE | L |
+---------+---------+======+
: length [VarUInt] :
+--------------------------+
| annot_length [VarUInt] |
+--------------------------+
| annot [VarUInt] | ...
+--------------------------+
| value |
+--------------------------+
.KE
.in 3
The length field L field indicates the length from the beginning of the
annot_length field to the end of the enclosed value. Because at least
one annotation and exactly one content field must exist, L is at least 3
and is never 15.
The annot_length field contains the length of the (one or more)
annot fields.
It is illegal for an annotation to wrap another annotation atomically,
i.e., annotation(annotation(value)). However, it is legal to have an
annotation on a container that holds annotated values. Note that it is
possible to enforce the illegality of annotation(annotation(value))
directly in a grammar, but we have not chosen to do that in
this document.
Furthermore, it is illegal for an annotation to wrap a NOP Pad since
this encoding is not an Ion value. Thus, the following sequence
is malformed:
.nf
0xE3 0x81 0x84 0x00
.in 3
Note: Because L cannot be zero, the octet 0xE0 is not a valid type
descriptor. Instead, that octet signals the start of a binary
version marker.
.tm _ 4.2.15. 0xF: Reserved ....................................... \n%
.ti 0
4.2.15. 0xF: Reserved
The remaining type code, 0xF, is reserved for future use and is not legal
in Ion 1.0 data.
.tm _ 4.3. Illegal Type Descriptors .................................. \n%
.ti 0
4.3. Illegal Type Descriptors
The preceding sections define valid type descriptor octets, composed of
a type code (T) in the upper four bits and a length field (L) in the
lower four bits. As mentioned, many possible combinations are illegal
and must cause parsing errors.
The following table enumerates the illegal type descriptors in Ion
1.0 data.
.nf
T L Reason
0x1 [2-14] For bool values, L is used to encode the
value, and may be 0 (false), 1 (true), or 15
(null.bool).
0x3 [0] The int 0 is always stored with type code 2.
Thus, type code 3 with L equal to zero
is illegal.
0x4 [1-3],[5-7],[9-14] For float values, only 32-bit and 64-bit
IEEE-754 values are supported. Additionally,
0e0 and null.float are represented with L
equal to 0 and 15, respectively.
0x6 [0-1] For timestamp values, a VarInt offset and
VarUInt year are required. Thus, type code 6
with L equal to zero or one is illegal.
0xE [0]*,[1-2],[15] Annotation wrappers must have one
annot_length field, at least one annot
field, and exactly one value field. Null
annotation wrappers are illegal.
Note: Since 0xE0 signals the start of the
BVM, encountering this octet where a type
descriptor is expected should only cause
parsing errors when it is not followed by
the rest of the BVM octet sequence.
0xF [0-15] The type code 15 is illegal in Ion 1.0 data.
.in 3