-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathops.py
40 lines (30 loc) · 1.64 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import tensorflow as tf
import tensorflow.contrib.slim as slim
def batch_norm(x, name='batch_norm'):
return tf.contrib.layers.batch_norm(x, decay=0.9, updates_collections=None, epsilon=1e-5, scale=True, scope=name)
def instance_norm(input, name='instance_norm'):
with tf.variable_scope(name):
depth = input.get_shape()[3]
scale = tf.get_variable('scale', [depth], initializer=tf.random_normal_initializer(1.0, 0.02, dtype=tf.float32))
offset = tf.get_variable('offset', [depth], initializer=tf.constant_initializer(0.0))
mean, variance = tf.nn.moments(input, axes=[1,2], keep_dims=True)
epsilon = 1e-5
inv = tf.rsqrt(variance + epsilon)
normalized = (input-mean)*inv
return scale*normalized + offset
def conv2d(input_, output_dim, ks=3, s=1, stddev=0.02, padding='SAME', name='conv2d'):
with tf.variable_scope(name):
return slim.conv2d(input_, output_dim, ks, s, padding=padding, activation_fn=None,
weights_initializer=tf.truncated_normal_initializer(stddev=stddev),
biases_initializer=None)
def deconv2d(input_, output_dim, ks=4, s=2, stddev=0.02, name='deconv2d'):
with tf.variable_scope(name):
return slim.conv2d_transpose(input_, output_dim, ks, s, padding='SAME', activation_fn=None,
weights_initializer=tf.truncated_normal_initializer(stddev=stddev),
biases_initializer=None)
def relu(x, name='relu'):
return tf.nn.relu(x)
def lrelu(x, leak=0.2, name='lrelu'):
return tf.maximum(x, leak*x)
def tanh(x):
return tf.nn.tanh(x)