-
Notifications
You must be signed in to change notification settings - Fork 298
/
Copy pathOpenAI_api.py
59 lines (48 loc) · 2.24 KB
/
OpenAI_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from flask import Flask, request, jsonify
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.utils import GenerationConfig
app = Flask(__name__)
# Load the pre-trained model and tokenizer
model_name = "baichuan-inc/Baichuan2-13B-Chat"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16, trust_remote_code=True)
#这里的torch_dtype=torch.float16可改为torch_dtype=torch.bfloat16,仅支持30系及以上显卡
model.generation_config = GenerationConfig.from_pretrained(model_name)
@app.route('/v1/chat/completions', methods=['POST'])#URL: http://127.0.0.1:8000/v1/chat/completions
def chat_completion():
try:
# Parse incoming JSON data
data = request.get_json()
messages = data.get('messages', [])
is_streaming = data.get('stream', False)
# Check if streaming is enabled
if is_streaming:#这里暂时只支持非流式输出
return jsonify({"error": "Streaming is not supported."}), 400
# Generate response using the model
response_text = generate_response(messages)
# Calculate token counts
prompt_tokens = sum(len(tokenizer.encode(msg['content'])) for msg in messages)
# 暂时不支持调节其他参数
completion_tokens = len(response_text)
total_tokens = prompt_tokens + completion_tokens
# Build the response
response_data = {
"object": "chat.completion",
"model": model_name,
"choices": [{"message": {"role": "assistant", "content": response_text}, "index": 0, "finish_reason": "stop"}],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": total_tokens
}
}
return jsonify(response_data)
except Exception as e:
return jsonify({"error": str(e)}), 500
def generate_response(messages):
# Generate response using the model
response = model.chat(tokenizer, messages)
return response
if __name__ == '__main__':
app.run(host='0.0.0.0', port=8000)