Skip to content

Latest commit

 

History

History
87 lines (67 loc) · 2.08 KB

USAGE.md

File metadata and controls

87 lines (67 loc) · 2.08 KB

Usage Snippets

general usage patterns

import os, sys
from copy import copy, deepcopy

LIB_HOME='/Users/photon/DevOps/Projects/Solar_System_Model'
os.chdir(LIB_HOME)
sys.path.extend([os.path.join('.', 'lib')])
import data as data
import planet as planet
import moon as moon
import sun as sun
import solarsystem as solarsystem
from planet import Planet
from moon import Moon
from sun import Sun
from solarsystem import SolarSystem
import orbital as orbital
import blender as blender 
import utilz as utilz
import dev as dev
import importlib
# create the solar system (planets & moons), this takes some time 
Planet.make_system(debug=True)
# scale down solar system objects
Planet.scale_planets(debug=True)
Moon.scale_moons(debug=True)
# use properties of solar system to configure scene props, like a cool kid
blender.scene_props(seperate_u=False)
#plot scene planets/moons, set orbital drivers
blender.plot_planet(Planet.byname('Mercury'), debug=True)
blender.add_orbital_drivers(Planet.byname('Mercury'))

blender.plot_planet(Planet.byname('Venus'), debug=True)
blender.add_orbital_drivers(Planet.byname('Venus'))

blender.plot_planet(Planet.byname('Earth'), debug=True)
blender.add_orbital_drivers(Planet.byname('Earth'))
blender.plot_natural_satellites(Planet.byname('Earth'), debug=True)

blender.plot_planet(Planet.byname('Mars'), debug=True)
blender.add_orbital_drivers(Planet.byname('Mars'))
blender.plot_natural_satellites(Planet.byname('Mars'), debug=True)

blender.plot_planet(Planet.byname('Jupiter'), debug=True)
blender.add_orbital_drivers(Planet.byname('Jupiter'))
blender.plot_natural_satellites(Planet.byname('Jupiter'))
#XYZ function for sphere
x= radius * ( sin(u)*sin(v) )  
y = radius * (cos(u)*sin(v) )
z = radius*(cos(v))




#XYZ function for hemisphere (sits like a dome)
## u = 0,2pi v = 0, radius
x=sqrt(semimajorAxis**2 - v**2)*(cos(u))
y=sqrt(semiminorAxis**2 - v**2)*(sin(u))
z=v

#XYZ function for hemisphere (flipped on z axis, like cup)
x=sqrt(10**2 - v**2)*(cos(u))
y=sqrt(10**2 - v**2)*(sin(u))
z=-v