This file includes evaluation results for each models implemented on each of the datasets. When contributing a new model/dataset, please update the results accordingly.
HateXPlain evaluation. Precision, Recall and F1-score are the results from the hatespeech class.
Model | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|
Bert | 0.689 | 0.777 | 0.752 | 0.764 |
CNN | 0.613 | 0.711 | 0.69 | 0.7 |
Softmax Regression | 0.366 | 0.298 | 0.087 | 0.135 |
RNN | 0.55 | 0.684 | 0.654 | 0.669 |
BiLSTM | 0.59 | 0.662 | 0.764 | 0.71 |
NetLSTM | 0.61 | 0.678 | 0.76 | 0.716 |
GRU | 0.609 | 0.666 | 0.777 | 0.72 |
Transformer (1 layer) | 0.486 | 0.495 | 0.6 | 0.543 |
Transformer (2 layers) | 0.532 | 0.551 | 0.732 | 0.629 |
CharCNN | 0.552 | 0.65 | 0.61 | 0.63 |
AngryBERT (primary only) | 0.649 | 0.736 | 0.695 | 0.764 |
DistilBERT | 0.646 | 0.766 | 0.704 | 0.734 |
RNN + GloVe | 0.546 | 0.59 | 0.779 | 0.672 |
CNN + GloVe | 0.644 | 0.69 | 0.767 | 0.726 |
BiLSTM + GloVe | 0.637 | 0.677 | 0.781 | 0.73 |
GRU + GloVe | 0.64 | 0.699 | 0.736 | 0.717 |
NetLSTM + GloVe | 0.616 | 0.679 | 0.756 | 0.715 |
Transformer (1 layer) + GloVe | 0.564 | 0.581 | 0.785 | 0.668 |
Transformer (2 layers) + GloVe | 0.572 | 0.751 | 0.609 | 0.672 |
CharCNN + Glove | 0.573 | 0.631 | 0.753 | 0.686 |
AngryBERT + Glove (primary only) | 0.660 | 0.75 | 0.771 | 0.76 |
UNet + Glove | 0.602 | 0.714 | 0.670 | 0.691 |
UNet | 0.548 | 0.646 | 0.670 | 0.657 |
VDCNN | 0.552 | 0.694 | 0.653 | 0.673 |
VDCNN + Glove | 0.601 | 0.681 | 0.694 | 0.688 |
HSAOL evaluation. Precision, Recall and F1-score are the results from the hate speech class. Due to the imbalanced nature of this dataset, the results from the hate speech class may be suboptimal.
Model | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|
CNN | 0.908 | 0.5 | 0.218 | 0.304 |
Softmax Regression | 0.757 | 0 | 0 | 0 |
RNN | 0.865 | 0 | 0 | 0 |
BiLSTM | 0.896 | 0 | 0 | 0 |
NetLSTM | 0.897 | 0.377 | 0.168 | 0.233 |
GRU | 0.904 | 0 | 0 | 0 |
Transformer (1 layer) | 0.876 | 0.448 | 0.104 | 0.169 |
Transformer (2 layers) | 0.887 | 0.4 | 0.192 | 0.26 |
UNet | 0.897 | 0.475 | 0.224 | 0.304 |
DistilBERT | 0.908 | 0.441 | 0.345 | 0.387 |
AngryBERT (primary only) | 0.908 | 0.3 | 0.024 | 0.044 |
RNN + GloVe | 0.898 | 0 | 0 | 0 |
CNN + GloVe | 0.915 | 0.518 | 0.244 | 0.331 |
BiLSTM + GloVe | 0.906 | 0 | 0 | 0 |
GRU + GloVe | 0.909 | 0 | 0 | 0 |
NetLSTM + GloVe | 0.906 | 0.397 | 0.193 | 0.260 |
Transformer (1 layer) + GloVe | 0.892 | 0.471 | 0.128 | 0.201 |
Transformer (2 layers) + GloVe | 0.907 | 0.474 | 0.216 | 0.287 |
UNet + Glove | 0.912 | 0.524 | 0.264 | 0.351 |
AngryBERT + Glove (primary only) | 0.913 | 0.385 | 0.12 | 0.183 |
Bert | 0.918 | 0.552 | 0.384 | 0.453 |
CharCNN | N/A | N/A | N/A | N/A |
CharCNN + Glove | N/A | N/A | N/A | N/A |
ETHOS evaluation. Precision, Recall and F1-score are the results from the hate speech class.
Model | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|
CNN | 0.644 | 0.639 | 0.548 | 0.590 |
Softmax Regression | 0.467 | 0.465 | 0.952 | 0.625 |
RNN | 0.522 | 0.4 | 0.048 | 0.085 |
BiLSTM | 0.589 | 0.619 | 0.310 | 0.413 |
NetLSTM | 0.544 | 0.6 | 0.071 | 0.128 |
GRU | 0.6 | 0.588 | 0.476 | 0.526 |
Transformer (1 layer) | 0.556 | 0.6 | 0.143 | 0.231 |
Transformer (2 layers) | 0.478 | 0.468 | 0.881 | 0.612 |
UNet | 0.478 | 0.471 | 0.976 | 0.636 |
DistilBERT | 0.744 | 0.757 | 0.667 | 0.709 |
AngryBERT (primary only) | 0.711 | 0.674 | 0.738 | 0.705 |
RNN + GloVe | 0.544 | 0.514 | 0.429 | 0.468 |
CNN + GloVe | 0.644 | 0.639 | 0.548 | 0.590 |
BiLSTM + GloVe | 0.656 | 0.628 | 0.643 | 0.635 |
GRU + GloVe | 0.711 | 0.674 | 0.738 | 0.705 |
NetLSTM + GloVe | 0.644 | 0.614 | 0.643 | 0.628 |
Transformer (1 layer) + GloVe | 0.611 | 0.569 | 0.690 | 0.624 |
Transformer (2 layers) + GloVe | 0.489 | 0.463 | 0.595 | 0.521 |
UNet + Glove | 0.722 | 0.707 | 0.690 | 0.699 |
AngryBERT + Glove (primary only) | 0.733 | 0.75 | 0.643 | 0.692 |
Bert | 0.756 | 0.763 | 0.690 | 0.725 |
CharCNN + GloVe | 0.533 | 0 | 0 | 0 |
CharCNN + GloVe | 0.533 | 0 | 0 | 0 |
VDCNN | 0.5 | 0.459 | 0.405 | 0.430 |
VDCNN + Glove | 0.755 | 0.708 | 0.810 | *0.756 |