-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessing.py
56 lines (41 loc) · 1.34 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
import nibabel as nib
import numpy as np
import matplotlib.pyplot as plt
import cv2
import math
from tqdm import tqdm
IMG_PX_SIZE = 80
HM_SLICES = 16
data_dir = 'C:/users/setcodestofire/documents/mygithub/brain/FinalData'
dataset = os.listdir(data_dir)
def chunks(l, n):
for i in range(0, len(l), n):
yield l[i:i + n]
def mean(l):
return sum(l) / len(l)
def process_data(data):
path = data_dir +'/'+ data
img3d = nib.load(path)
a = np.array(img3d.get_data())
slice_img=[]
if "bold" not in data:
label = [0,1]
for i in range(a.shape[2]):
slice_img.append(cv2.resize(np.array(a[:,:,i]),(IMG_PX_SIZE,IMG_PX_SIZE)))
else:
label = [1,0]
for i in range(a.shape[2]):
slice_img.append(cv2.resize(np.array(a[:,:,i,0]),(IMG_PX_SIZE,IMG_PX_SIZE)))
new_slices = []
chunk_sizes = math.ceil(len(slice_img) / HM_SLICES)
for slice_chunk in chunks(slice_img, chunk_sizes):
slice_chunk = list(map(mean, zip(*slice_chunk)))
new_slices.append(slice_chunk)
return np.array(new_slices),np.array(label)
much_data = []
for data in tqdm(dataset):
img_data,label = process_data(data)
for j in range(16):
much_data.append([img_data[j],label])
np.save('muchdata-{}-{}-{}.npy'.format(IMG_PX_SIZE,IMG_PX_SIZE,HM_SLICES), much_data)