This repository has been archived by the owner on Dec 13, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathcommands.sh
19 lines (17 loc) · 2.04 KB
/
commands.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Fashion-MNIST
CUDA_VISIBLE_DEVICES=0 python train.py --dataset=fashion_mnist --epoch=25 --adversarial_loss_mode=gan
CUDA_VISIBLE_DEVICES=0 python train.py --dataset=fashion_mnist --epoch=25 --adversarial_loss_mode=gan --gradient_penalty_mode=1-gp --gradient_penalty_sample_mode=dragan
CUDA_VISIBLE_DEVICES=0 python train.py --dataset=fashion_mnist --epoch=25 --adversarial_loss_mode=lsgan
CUDA_VISIBLE_DEVICES=0 python train.py --dataset=fashion_mnist --epoch=50 --adversarial_loss_mode=wgan --gradient_penalty_mode=1-gp --gradient_penalty_sample_mode=line --n_d=5
# CelebA
CUDA_VISIBLE_DEVICES=0 python train.py --dataset=celeba --epoch=25 --adversarial_loss_mode=gan
CUDA_VISIBLE_DEVICES=0 python train.py --dataset=celeba --epoch=25 --adversarial_loss_mode=gan --gradient_penalty_mode=1-gp --gradient_penalty_sample_mode=dragan
CUDA_VISIBLE_DEVICES=0 python train.py --dataset=celeba --epoch=25 --adversarial_loss_mode=gan --gradient_penalty_mode=lp --gradient_penalty_sample_mode=dragan
CUDA_VISIBLE_DEVICES=0 python train.py --dataset=celeba --epoch=25 --adversarial_loss_mode=lsgan
CUDA_VISIBLE_DEVICES=0 python train.py --dataset=celeba --epoch=50 --adversarial_loss_mode=wgan --gradient_penalty_mode=1-gp --gradient_penalty_sample_mode=line --n_d=5
CUDA_VISIBLE_DEVICES=0 python train.py --dataset=celeba --epoch=50 --adversarial_loss_mode=wgan --gradient_penalty_mode=lp --gradient_penalty_sample_mode=line --n_d=5
# Anime
CUDA_VISIBLE_DEVICES=0 python train.py --dataset=anime --epoch=100 --adversarial_loss_mode=gan --gradient_penalty_mode=1-gp --gradient_penalty_sample_mode=dragan
CUDA_VISIBLE_DEVICES=0 python train.py --dataset=anime --epoch=100 --adversarial_loss_mode=gan --gradient_penalty_mode=lp --gradient_penalty_sample_mode=dragan
CUDA_VISIBLE_DEVICES=0 python train.py --dataset=anime --epoch=200 --adversarial_loss_mode=wgan --gradient_penalty_mode=1-gp --gradient_penalty_sample_mode=line --n_d=5
CUDA_VISIBLE_DEVICES=0 python train.py --dataset=anime --epoch=200 --adversarial_loss_mode=wgan --gradient_penalty_mode=lp --gradient_penalty_sample_mode=line --n_d=5