-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpay_processing.py
55 lines (45 loc) · 2 KB
/
pay_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from __future__ import division #now division always returns a floating point number
import numpy as np
import pandas as pd
from scipy import stats
tts = '''your copy of the csv here'''
min_pval = 0.05;
#split_on = 'Did You Accept the Offer?'
#split_on = 'Degree Level'
split_on = 'Position Type'
if __name__ == '__main__':
bals = pd.read_csv(tts)
# Visualizing difference in total compensation by gender
#bals['total'] = [float(str(r).translate(None, ',$')) for r in bals['Total First Year Annualized Renumeration(including Signon & Relocation)']]
# Visualizing differences in whether someone negotiated or not by gender
bals['total'] = [True if r == 'Yes' else False for r in bals['Did You Negotiate the Offer?']]
#bals = bals[bals['Position Type'] == 'Full Time']
types = bals[split_on].unique()
for t in types:
slice = bals[bals[split_on] == t]
if len(slice) <= 1:
continue;
print 'Splitting on ' + str(t)
grouped = slice.groupby('Sex')
g = grouped['total'].agg({'mean': 'mean', 'std': 'std', 'count': 'count'})
g = g[g['count'] > 1]
ttest = pd.DataFrame(index= g.index, columns = g.index)
df = pd.DataFrame(index= g.index, columns = g.index)
pv = pd.DataFrame(index= g.index, columns = g.index)
yn = pd.DataFrame(index= g.index, columns = g.index)
for i, r in g.iterrows():
sn1 = r['std']*r['std']/r['count'];
for j, k in g.iterrows():
sn2 = k['std']*k['std']/k['count']
ttest.ix[i,j] = abs(r['mean'] - k['mean'])/np.sqrt(sn1+ sn2)
df.ix[i,j] = (sn1 + sn2)*(sn1 + sn2)/(sn1*sn1/(r['count'] - 1) + sn2*sn2/(k['count']-1))
pv.ix[i,j] = stats.t.sf(np.abs(ttest.ix[i,j]), df.ix[i,j])*2
if pv.ix[i,j] < min_pval:
yn.ix[i,j] = True
else:
yn.ix[i,j] = False
print df
print ttest
print pv
print yn
print g