-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexplainer.py
68 lines (61 loc) · 2.67 KB
/
explainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import shap
from utilities.tools import *
from utilities.class_names import get_classes_for_model
# Load model
suppress_tf_warnings()
# Load model (Compiling failed, so I compiled it manually)
model = keras.models.load_model("../../models/car_types/efficientnet-car-type_best_model.h5", compile=False)
# model = keras.models.load_model("../../models/car_types/best_model/vgg16-pretrained.h5", compile=False)
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
# Set config
img_height = 300
img_width = 300
img_folder = '../../predicting/test_images'
# Set model Type to 'all_specific_model_variants' or 'car_type' or "specific_model_variants"
model_type = 'car_type'
path_addon = get_data_path_addon(model_type)
classes = get_classes_for_model(model_type)
config = {
"path": f"C:/Users\phili/.keras/datasets/resized_DVM/{path_addon}",
"batch_size": 32,
"img_height": img_height,
"img_width": img_width,
}
# Load background dataset
background_data = load_explainer_data(**config, shuffle=1000, number_images=2000)
# Load test images
images = []
img_names = []
for image in os.listdir(img_folder):
img_names.append(image)
img = tf.keras.utils.load_img(f"{img_folder}/{image}", target_size=(img_height, img_width))
img_array = tf.keras.utils.img_to_array(img)
img_array = np.expand_dims(img_array, 0) # Create a batch
images.append(img_array)
# Create explainer
explainer = shap.GradientExplainer(model, background_data) # local_smoothing=0.1
# Explain and plot the results ( You can change CPU to GPU if you have a good enough GPU,
# on large models the GPU must have a big amount of memory)
with tf.device('/CPU:0'):
for image, name in zip(images, img_names):
shap_values, indexes = explainer.shap_values(image, ranked_outputs=3)
# get the names for the classes
print(indexes)
image = image / 255
index_names = np.vectorize(lambda x: classes[x])(indexes)
shap.image_plot(shap_values, image, index_names, show=False)
plt.suptitle("SHAP values for " + name)
fig1 = plt.gcf()
plt.show()
# Remove file extension from image name
name = name.split(".")[0]
if model_type == "all_specific_model_variants":
fig1.savefig(f"results/all_model_variants/shap_values_{name}.png")
elif model_type == "specific_model_variants":
fig1.savefig(f"results/model_variants/shap_values_{name}.png")
elif model_type == "car_type":
fig1.savefig(f"results/car_types/shap_values_{name}.png")
else:
raise ValueError("Model type not supported")