-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpulp_linear_fp32.c
163 lines (135 loc) · 4.58 KB
/
pulp_linear_fp32.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/*
* Copyright (C) 2021-2022 ETH Zurich and University of Bologna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* Authors: Davide Nadalini, Leonardo Ravaglia
*/
#include "pulp_train_utils_fp32.h"
#include "pulp_matmul_fp32.h"
#include "pulp_linear_fp32.h"
void pulp_linear_fp32_fw_cl( void * Linear_args )
{
struct Linear_args * FC_args = (struct Linear_args *) Linear_args;
float *coeffData = FC_args->coeff->data;
float *outData = FC_args->output->data;
float *inputData = FC_args->input->data;
int Ci = FC_args->input->dim;
int Co = FC_args->output->dim;
int opt_matmul_type = FC_args->opt_matmul_type_fw;
struct matMul_args matMul_args;
matMul_args.A = coeffData;
matMul_args.B = inputData;
matMul_args.C = outData;
matMul_args.N = Co; //FC_args->output->dim;
matMul_args.K = Ci; //FC_args->input->dim;
matMul_args.M = 1;
matMul_args.trans_B = 0;
#ifndef OPTIMIZE
pi_cl_team_fork(NUM_CORES, mm, &matMul_args);
#else
struct mm_manager_args man_args;
man_args.mm_args = &matMul_args;
man_args.layer_type = LAYER_LINEAR;
man_args.step_type = STEP_FW;
man_args.matmul_type = opt_matmul_type; //MATMUL_TYPE;
pi_cl_team_fork(NUM_CORES, mm_manager, &man_args);
#endif
}
void pulp_linear_fp32_bw_cl( void * Linear_args )
{
struct Linear_args * FC_args = (struct Linear_args *) Linear_args;
int skip_in_grad = FC_args->skip_in_grad;
pulp_linear_fp32_bw_param_grads_cl(Linear_args);
if (skip_in_grad == 0)
{
pulp_linear_fp32_bw_input_grads_cl(Linear_args);
}
}
void pulp_linear_fp32_bw_param_grads_cl( void * Linear_args )
{
struct Linear_args * FC_args = (struct Linear_args *) Linear_args;
float *coeffData = FC_args->coeff->data;
float *inData = FC_args->input->data;
float *outData = FC_args->output->data;
float *coeffDiff = FC_args->coeff->diff;
float *outDiff = FC_args->output->diff;
float *inDiff = FC_args->input->diff;
int Ci = FC_args->input->dim;
int Co = FC_args->output->dim;
int opt_matmul_type = FC_args->opt_matmul_type_wg;
struct matMul_args matMul_args;
matMul_args.A = outDiff;
matMul_args.B = inData;
matMul_args.C = coeffDiff;
/**
* EXERCISE 3 - SIZE OF MATRICES (WEIGHT GRAD)
*/
// COMPLETE THE MATRIX SIZES
matMul_args.N = /* YOUR CODE HERE, REMOVE 0; */ 0;
matMul_args.K = /* YOUR CODE HERE, REMOVE 0; */ 0;
matMul_args.M = /* YOUR CODE HERE, REMOVE 0; */ 0;
/**
* END OF EXERCISE 3 - SIZE OF MATRICES (WEIGHT GRAD)
*/
matMul_args.trans_B = 0;
#ifndef OPTIMIZE
pi_cl_team_fork(NUM_CORES, mm, &matMul_args);
#else
struct mm_manager_args man_args;
man_args.mm_args = &matMul_args;
man_args.layer_type = LAYER_LINEAR;
man_args.step_type = STEP_WGT_GRAD;
man_args.matmul_type = opt_matmul_type; //MATMUL_TYPE;
pi_cl_team_fork(NUM_CORES, mm_manager, &man_args);
#endif
}
void pulp_linear_fp32_bw_input_grads_cl( void * Linear_args )
{
struct Linear_args * FC_args = (struct Linear_args *) Linear_args;
float *coeffData = FC_args->coeff->data;
float *inData = FC_args->input->data;
float *outData = FC_args->output->data;
float *coeffDiff = FC_args->coeff->diff;
float *outDiff = FC_args->output->diff;
float *inDiff = FC_args->input->diff;
int Ci = FC_args->input->dim;
int Co = FC_args->output->dim;
int opt_matmul_type = FC_args->opt_matmul_type_ig;
struct matMul_args matMul_args;
matMul_args.A = outDiff;
matMul_args.B = coeffData;
matMul_args.C = inDiff;
/**
* EXERCISE 3 - SIZE OF MATRICES (INPUT GRAD)
*/
// COMPLETE THE MATRIX SIZES
matMul_args.N = /* YOUR CODE HERE, REMOVE 0; */ 0;
matMul_args.K = /* YOUR CODE HERE, REMOVE 0; */ 0;
matMul_args.M = /* YOUR CODE HERE, REMOVE 0; */ 0;
/**
* END OF EXERCISE 3 - SIZE OF MATRICES (INPUT GRAD)
*/
matMul_args.trans_B = 0;
#ifndef OPTIMIZE
pi_cl_team_fork(NUM_CORES, mm_M, &matMul_args);
#else
struct mm_manager_args man_args;
man_args.mm_args = &matMul_args;
man_args.layer_type = LAYER_LINEAR;
man_args.step_type = STEP_IN_GRAD;
man_args.matmul_type = opt_matmul_type; //MATMUL_TYPE;
pi_cl_team_fork(NUM_CORES, mm_manager, &man_args);
#endif
}