-
Notifications
You must be signed in to change notification settings - Fork 229
/
Copy pathnms.cu
103 lines (88 loc) · 3.25 KB
/
nms.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <vector>
#include <algorithm>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <torch/types.h>
#include <torch/extension.h>
#define WARP_SIZE 32
#define INT4(value) (reinterpret_cast<int4 *>(&(value))[0])
#define FLOAT4(value) (reinterpret_cast<float4 *>(&(value))[0])
__global__ void nms_kernel(const float *boxes, const float *scores, int *keep, int num_boxes, float iou_threshold) {
const int threadsPerBlock = blockDim.x;
const int threadId = threadIdx.x;
const int blockId = blockIdx.x;
const int idx = blockId * threadsPerBlock + threadId;
if (idx >= num_boxes)
return;
float x1 = boxes[idx * 4 + 0];
float y1 = boxes[idx * 4 + 1];
float x2 = boxes[idx * 4 + 2];
float y2 = boxes[idx * 4 + 3];
int suppressed = 0;
for (int i = 0; i < idx; ++i) {
if (keep[i] == 0)
continue;
float x1_i = boxes[i * 4 + 0];
float y1_i = boxes[i * 4 + 1];
float x2_i = boxes[i * 4 + 2];
float y2_i = boxes[i * 4 + 3];
float inter_x1 = max(x1, x1_i);
float inter_y1 = max(y1, y1_i);
float inter_x2 = min(x2, x2_i);
float inter_y2 = min(y2, y2_i);
float inter_w = max(0.0f, inter_x2 - inter_x1);
float inter_h = max(0.0f, inter_y2 - inter_y1);
float inter_area = inter_w * inter_h;
float area = (x2 - x1) * (y2 - y1);
float area_i = (x2_i - x1_i) * (y2_i - y1_i);
float iou = inter_area / (area + area_i - inter_area);
if (iou > iou_threshold) {
keep[idx] = 0;
return;
}
}
keep[idx] = 1;
return;
}
// --------------------- PyTorch bindings for custom kernel -----------------------
#define STRINGFY(str) #str
#define TORCH_BINDING_COMMON_EXTENSION(func) \
m.def(STRINGFY(func), &func, STRINGFY(func));
#define CHECK_TORCH_TENSOR_DTYPE(T, th_type) \
if (((T).options().dtype() != (th_type))) { \
std::cout << "Tensor Info:" << (T).options() << std::endl; \
throw std::runtime_error("values must be " #th_type); \
}
torch::Tensor nms(torch::Tensor boxes, torch::Tensor scores, float iou_threshold) {
CHECK_TORCH_TENSOR_DTYPE(boxes, torch::kFloat32);
CHECK_TORCH_TENSOR_DTYPE(scores, torch::kFloat32);
const int num_boxes = boxes.size(0);
auto toption = torch::TensorOptions().dtype(torch::kInt32).device(boxes.device());
auto keep = torch::empty({boxes.size(0)}, toption);
dim3 block(WARP_SIZE);
dim3 grid((num_boxes + WARP_SIZE - 1) / WARP_SIZE);
// sort boxes by scores
auto order_t = std::get<1>(
scores.sort(/*stable=*/true, /*dim=*/0, /* descending=*/true));
auto boxes_sorted = boxes.index_select(0, order_t).contiguous();
nms_kernel<<<grid, block>>>(
reinterpret_cast<float *>(boxes_sorted.data_ptr()),
reinterpret_cast<float *>(scores.data_ptr()),
reinterpret_cast<int *>(keep.data_ptr()),
num_boxes, iou_threshold);
auto keep_cpu = keep.to(torch::kCPU);
std::vector<int> keep_indices;
auto keep_accessor = keep_cpu.accessor<int, 1>();
for (int i = 0; i < num_boxes; ++i) {
if (keep_accessor[i] == 1) {
keep_indices.push_back(i);
}
}
return torch::tensor(keep_indices, torch::TensorOptions().dtype(torch::kInt32));
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
TORCH_BINDING_COMMON_EXTENSION(nms)
}