-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpu_stress.py
36 lines (26 loc) · 1022 Bytes
/
gpu_stress.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import argparse
import time
import torch
from loguru import logger
def gpu_stress_test(n: int):
# Check if CUDA is available
if torch.cuda.is_available():
# Set the device to GPU
device = torch.device("cuda")
logger.info("Running GPU stress test on:", torch.cuda.get_device_name(device))
# Create large random matrices
A = torch.randn(n, n, device=device)
B = torch.randn(n, n, device=device)
# Perform matrix multiplication repeatedly
while True:
torch.matmul(A, B)
# Optional: Sleep for a short duration
time.sleep(0.1) # Adjust the sleep time as needed
else:
logger.error("CUDA not available. Please run this on a machine with a CUDA-capable GPU.")
exit(1)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-n", help="Size of the matrix to be multiplied", type=int, default=6200)
args = parser.parse_args()
gpu_stress_test(args.n)